

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098 | log59

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen for r, s). On the other hand, the first term on the right hand side of the identity (12), i.e. $z_0(t) = x_{ae} * x_{ae} * \dots * x_{ae}$ (k times) fulfils (again according to Lemma 1)

$$\frac{z_0(s)-z_0(r)}{s-r}=\frac{2\varepsilon^k t^{k-1}}{2^{2k-1}(k-1)!}\cdot\frac{2a}{5}+\varepsilon^k g_k(t,a)$$

where $g_k(t, a)$ is bounded as a function of a for any k, t. It is evident that if a is chosen sufficiently large then (8) holds and hence $x \in G_n^+$. The proof of (ii) for the sets G_n^- being quite analogous, we may consider the proof of Theorem 3 complete.

Remark. Let $\xi \in V$ (see Theorem 3). Take the set $V(\xi)$ of all functions from C with the following property: If $x_i \in V(\xi)$, i = 1, 2, ..., k, then the convolution $x_1 * x_2 * ... * x_k$ does not possess the derivative at any point 0 < t < 1. It would be interesting to obtain some information on the structure of the sets $V(\xi)$ and their mutual relations. (If $\mathscr{V} = \bigcup_{\xi \in V} V(\xi)$, then evidently $V \subset \mathscr{V}$ and hence the complement of \mathscr{V} in C is of the 1st category.)

References

[1] Jarnik, V.: Sur le produit de composition de deux fonctions continues. Studia Math. 12 (1951), pp. 58-64.

Author's address: 115 67 Praha 1, Žitná 25 (Matematický ústav ČSAV v Praze).