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Casopis pro p&stovini matematiky, rot. 98 (1973), Praha

ON THE RANGE OF VALUES OF THE SUM OF A CONTINUOUS
AND A DARBOUX FUNCTIONS

RupoOLF SVARC, Praha

(Received June 25, 1971)

The following assertion will be used in the proof of Theorem 1.

Assertion. There exist real functions g, h defined on E, with the property: For any
interval J c E; and ye E,,

(1) hg~'(y)nJ) = E,.
The proof of this assertion can be found in [1].

Theorem 1. Let the set M = E, be at most countable. Let f be a continuous function
defined in an interval I < E, and such that

(2 f~(») is at most countable for any yekE, .

Then there exists a function d defined in I with the properties:
(i) d(J) = E, for any interval J < I;
(i) (f + d)(I) <« E; — M;
(iii) f + d is unbounded both from above and from below on any interval J < I.

Proof. Let ke E; — M. Let us define:

/— f(x) + k incase xel and thereexists meM
3 d(x) = o such that g(x) = —f(x) + m;
9(x)

for the other xel.

g is the function from (1).

Let J = I, ye E,. According to (1), the set g~!(y) n J is uncountable. Let us
« define:

(4 An={z;2eg7 (NN J&f(z) =m — y}
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for any m € M. A, is at most countable according to (2), therefore 4 = U A4, is also
meM

at most countable. That is why g~!(y) n J — 4 #+ 0 and (according to (3), (4)) if
teg '(y) n J — A, then d(f) = y. This completes the proof of (i).
The following equality holds according to (3):

k in case x €l and there exists me M
f(x) + d(x) = < such that g(x) = —f(x) + m;
f(x) + g(x) incase xel and g(x)+ —f(x) + m
forany meM.
Hence the validity of the condition (ii) can be easily seen.
The validity of the condition (iii) is evident.

Theorem 2. Let the set M — E, be nowhere dense in E,. Let f be a continuous
function in an interval I < E, such that

(5) f is not constant in any interval J < I.

Then there exists a function d defined in I having the following properties:

(i) d(J) = E, for any interval J < I,
() (f+ d)(I) = E, — M;
(ii)) f + d is unbounded both from above and from below on any interval J < I.

Proof. Let us define the function d by the formula (3) Let J < I, y € E,. It follows
from (1) that

(6) g~ '(») nJ isdensein J.

The function F defined by the formula
(7 F(x)=f(x)+y forany xel

is continuous in J. According to (5) there exist two points x; < x,, Xy, x, € J such
that F(x,) + F(x,). Let (y', ") be the open interval with the end points F(x,), F(x,).
Since M is nowhere dense in E,, there exists an interval (w', w") < (', ") such that
(W, w") n M = 0. Since (6) holds and the function F is continuous, the set g ~*(y) N
nJ A F~(w, w") is non-empty. Let t be an element of this set. Then d(f) = y
according to (3) and (7). This completes the proof of (i).

The proof of the conditions (ii) and (iii) is similar to that of the conditions (ii) and
(iii) of Theorem 1.

Remark 1. The set of all rationals fulfils the assumptions of Theorem 1 but does
not fulfil the assumptions of Theorem 2. Cantor set fulfils the assumptions of Theorem
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