

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098 | log37

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Then one can easily prove that there are two color classes, say C_1 , C_2 , for which there is a set of pairs $N^1 \subseteq C_1 \times C_2$ such that it holds:

$$(i,j) \in N^1 \Rightarrow 1 < |i-j|$$
 is an odd number;
 $(i,j) \neq (i',j') \in N^1 \Rightarrow i \neq i'$ and $j \neq j'$; $|N^1| = (2k)^{2k}$.

Now we can go on similarly as in the above procedure:

The set of all M_i^1 for which $M_i^1 \supset \{i,j\}$, where $(i,j) \in N^1$, cannot be colored by less than three colors; thus there are again $2m_1 \cdot m$ sets M_i^1 which are colored by the same color and which are pairwise disjoint (this can be easily managed). Define analogously as above $N_{2i}^2 = \{M_{2i-1}^1\} \cup \{a_{2i}, b_{2i}\}, i = 1, ..., m_1 \cdot m$. (Here $(a_{2i}, b_{2i}) \in N^1$, $a_{2i}, b_{2i} \notin M_{2i-1}^1$, which can be done by a suitable numbering of sets under consideration.) From the sets M_i^2 containing an N_{2i}^2 we can again choose $2m_2 \cdot m$ disjoint sets which are colored by the same color. We can then define N_{2i}^2 and so on. Finally we can define m pairwise disjoint sets N_i^k such that $|N_i^k| = k + 1$ and $N_i^k \cap C_i \neq \emptyset$, i = 1, ..., k + 1. Now there are two possible cases. Let first $x \in V(P_n^{k-1}) \cap C_{k+2} \neq \emptyset$. Since we have m pairwise disjoint N_i^k with the above properties, there is N_i^k with $N_i^k \cap x = \emptyset$. Thus $N^k \cup \{x\} \in \mathcal{M}^k$, a contradiction. Let $V(P_n^{k-1}) \cap C_{k+2} = \emptyset$. Then it can be easily proved by induction that C is uniquely determined by $C_1 \cup C_2 = V(P_n)$, $C_{i+2} = \mathcal{M}^i$, i = 1, ..., k.

References

- [0] R. L. Brooks: On coloring the nodes of a network. Proc. Cambridge Phil. Soc. 37 (1941), 194-197
- [1] V. Chvátal: The smallest triangle free 4-chromatic 4-regular graph (To appear).
- [2] B. Grünbaum: A problem in graph coloring (To appear).
- [3] F. Harary, S. T. Hedetniemi and R. W. Robinson: Uniquely colorable graphs. J. Comb. Th. (1969) 260-270
- [4] F. Harary: Graph theory. Addison Wesley, Reading 1969.
- [5] L. Lovász: On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 (1968), 59-67.
- [6] J. Nešetřil: k-chromatic graphs without cycles of length ≤7 (in Russian) Comment. Math. Univ. Carolinae 7 (1966), 373-376.

Author's address: 180 00 Praha 8 - Karlín, Sokolovská 83 (Matematicko-fyzikální fakulta UK).