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ON UNIQUELY COLORABLE GRAPHS WITHOUT SHORT CYCLES

JAarROsLAV NESETRIL, Praha
(Received April 9, 1970)

1. INTRODUCTION

A uniquely colorable graph is defined in [3] as a graph X which possesses exactly
one partition into n color classes, where n = y(X) is the chromatic number of the
graph X.

Let A(X) denote the maximal degree of a point of X. We shall characterize uniquely
colorable graphs X which satisfy 4(X) < n = x(X). This is related to the problem of
the existence of an n-chromatic graph with a large chord in the following way:

A theorem established in [0] states that y(X) < 4(X), with the exception of an odd
cycle and K, (the complete graph with n points). On the other hand, the question if
there is an n-chromatic graph without cycles of length <k has been solved construc-
tively only recently, see [4], [6].

B. GRUNBAUM conjectured that for every n, k there is an n-regular n-chromatic
graph without cycles of length <k. (A graph is n-regular if all the points of X have
the same degree n). This conjecture is proved to be true for couples (4, 3) and (4, 4),
see [1, 2], except the trivial cases.

From our result it will follow that there is no uniquely colorable graph satisfying
this conjecture (for k = 3, i.e. non-trivial), or that every such graph possesses at least
two different colorings. For the same reason, the naturally arising question if there is
a uniquely n-colorable graph without cycles of length <k, seems to be harder than
for n-chromatic graphs in general; none of the known constructions of n-colorable
graphs without short cycles gives uniquely colorable graphs.

Nevertheless, we conjecture that the answer to this question is also affirmative. To
support this we give here a construction of a uniquely k-colorable graph (for every
k = 1) without triangles. In fact, we prove that there is a countable number of such
graphs for every k = 1. This generalizes theorems from [3, 4]*).

*) The examples of graphs given in [3] and [4], p 139 do not serve as examples of uniquely
3-colorable graphs.
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2. UNIQUELY COLORABLE GRAPHS WITH SMALL DEGREES

Let us denote by UC, the class of all uniquely n-colorable graphs. Obviously all
connected graphs X e UC, which satisfy 4(X) < 2 are exactly even cycles and paths.
Thus, let be n > 2 from now on. Let X € UC,, 4(X) < n be a fixed graph, M =
= {M,, ..., M,} the coloring of X. For x e V(X) denote by V(x, X) the set of all
adjacent points to x in X.

We shall need the following:

Lemma. Let X be the subgraph of X induced on the set U{M; i 2 2}. Then
U{V(x, X); xe M,} = V(X) and if y e V(x, X) for exactly one x € M, then either
y # ¥ €V(x, X) implies y' e V(x', X) for some x # x' € M, or V(x, X) = V(X).

Proof. {V(x, X); x € M,} is a covering of V(X), for if there is a y € V(X) such that
y ¢ V(x, X) for every x e M,, then the coloring M’ defined by My = M, U {y},
M; = M;\{y}, i = 2is different from M. The proof of the second part of the state-
ment proceeds similarly.

Theorem 1. K, and K,_,; + K, are the only UC,-graphs X for which it holds
A(X) £ n. (Here X denotes the complement of the graph X and X + Y denotes the
join (Zykov sum) of the graphs X and Y, see [4]).

Proof. Let X € UC;, A(X) < 3, then (in the above notation) X € UC, and by
Lemma A(X) < 2. It is easy to prove that |£| < 4. It can be verified by examining
the individual cases that K5 and K, + K, are the only uniquely 3-colorable graphs
under consideration.

It is easy to complete the proof of the statement by induction.

Corollary. Odd cycles are exactly 2-regular elements of UC,. There are no
n-regular elements of UC,, n > 2.

Remark. Adding two suitable edges to the graph described in [4], p. 139, one
obtains a graph X from UC, which has no triangles and for which 4(X) = 4 holds.

3. UNIQUELY COLORABLE GRAPHS WITHOUT TRIANGLES

Let X be a graph, M < V(X). The set M is called an independent subset if x, y €
€M =[x, y] ¢ E(X).

Let P, be the path of length n (ie. V(P,) = {1,...,n + 1}, [i, i + 1] € E(P,),
i = 1, ..., n). Define by induction the graphs P}, i > 0.

Let #' = {M}; ¢ < k'(n)} be the set of all independent sets M < V(P,) with
|M| = 3 such that there are i + j € M with |i — j| odd.
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Let P} be the graph defined by: V(P;) = V(P,) LU 4",
[x, y] € E(P}) iff either x, y e V(P,) and [x, y] € E(P,) or x = M} € #" and y € M].
Let P{ be defined forallj < i,i = 1. .

Let #'*1 = {M{*'; « < k'*!(n)} be the set of all independent sets M < V(P;)
such that |M| =i+ 3, Mn # + 0 for every j < i and there are k + me M n
N V(P,), |k — m| being odd.

Define the graph Pi*! by: V(P,*!) = V(P}) v M** [x, y] € E(Pi*") iff either
x, yeV(P;)and [x, y]e E(P;)or x = M{*' e #**' and y e M;*". By the definition,
the graph does not contain a triangle for every i = 1. Further, it is obvious that
(P Si+2

We shall prove

Theorem 2. Let k > 1. Let n > 16(k + 2) (2k)**3. Then Pfe UC,..,.

Proof. Let C = {Cj, ..., Cy.,} be a coloring of P}. We distinguish two cases.

1) There are three classes, say C,, C,, C5 such that |C; " V(P,)| 2 n/(k + 2),
i = 1,2,3. We prove first that there are (2k)* pairwise disjoint sets M, from "
such that all of them are colored exactly by 3 different colors (not necessarily 1, 2, 3).
Suppose to the contrary that there are no such sets from 4*. Then [C, U C, U C;| £
< 4n + 3(2k)* (since |C; N V(P,)| Z n(k + 2), Cy, C, and C, cannot contain ““too
many”’ couples i, j with |i - j| odd, and the same argument shows that there is a set
A< C,UCysuchthat |[An C| 2 (2k)t, i =1,2and i # je Aimplies |i — j| even.
Thus there is at least $n — 3(2k)*)/4 > (k — 1) (2k)* elements i e V(P,) such that
|i — j| is odd for every j € A. From these facts a contradition easily follows).

Now we shall construct an M* € .#* such that M* N C; + @ foreveryi = 1,2, ...
..., k + 2. This will contradict the assumption that C is a coloring.

Put m = (2k)*. Without loss of generality, let M}, ..., M}, be sets from .#* such
that MinMj =0 for i+j<mand MnC;+ 0 for i=1,..,m and j =
=1,2,3. Since m = (2k) (2k)*~" there is 2(2k)*"! = 2m, elements of the set
{Mj, ..., M)} which are colored by the same color >4, wihout loss of generality let
us assume that MieC, for i =1,...,2m,. Define M2, e #% i=1,...,m, by
M3, = {M},_,} U M3, (It is M}, e #* since M} are pairwise disjoint.) Further
M}nC;+0fori=1,..,m;andj=1,23,4.

Now, without loss of generality, we can find again M7, j = 1, ..., 2m, = 2(2k)*~2
such that {M%, ..., M3,.} < C, for an i 2 5, say for i = 5. We can define M3, =
={M}_JUuM},i=1,..,m, TItis Mj;e #° and M3,nC; +0j=1,..,5.
This procedure can be continued inductively and finally we get an M*e .#* for
which M*NC; #0,j=1,..,k + 2.

2) There are exactly two classes, say C,, C, such that

|C,nV(P,,)|gk:2, i=1,2.
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