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INTRODUCTION

Let A = (X, F) be an algebra in the sense of Professor Marczewski. In this paper
it is supposed that card X = 2. Let w, denote the number of essentially n-ary algebraic
operations in U, it means, n-ary algebraic operations depending on each variable.
Observe that w; = 1 in view of the existence of the trivial unary operation f(x) = x.

Professor MARCZEWSKI suggested the examination of possible sequences {w,} in
general algebras. In this paper we give a complete description of possible sequences
{w,} under the condition w, < 2 for all n (Section 2). In Section 1 we look for
a representation of algebras in which w, = 1. This concrete topic has been suggested
to me by J. PLONKA in connection with my attending of seminar of Prof. G. GRATZER
in Winnipeg.

Sometimes we shall omit the word “algebraic”, when we speak about algebraic
operation. The representability of an algebra is defined as in [6].

1.
In the first part we shall be interested in an algebra % = (X; F), where v, = 1 for
n=0,1,2,... So, if not stated otherwise, & means such an algebra.
Remark 1. It is clear that an algebra with w, = 1 for all n possesses at least two

elements.

Lemma 1. If x .y is essentially binary in U, then it must be symmetric and
associative.

Proof. The first part follows from w, = 1. If (x . y) . z is essentially ternary, then
x.(y.z) =(y.z).x is also essentially ternary and in view of w; = 1 it must be
(x.y).z=1x.(y.z). If(x. y). z is not essentially ternary, it can be equal to one of
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the following functions: x, y, z, x. y,x.z, y .z or to the constant ¢, which exists
in view of wy = 1.,

It cannot be (x . y) . z = x or y because the operation . is symmetric and cannot
be equal to x . z or y . z, because in this case we get x . z = y . z, which contradicts
to the assumption that . is essentially binary. If it were (x. y).z = zor(x.y).z =
= x.y, then putting z = u.v we would get in the first case x.y = u . v, hence
x.y = ¢ — a contradiction. The second case is analogous. Thus itis (x.y).z = c.
And similarly we prove x . (y.z) = c. It means (x.y).z = x.(y. z).

We have two possibilities: either x . x = xor x. x = c.

Lemma 2. If x.x = x, then A can be represented as an at least two-element
semilattice with Q or 1.

Proof. It follows from Lemma 1, that . satisfies the axioms of semilattice. Because
wo = w; = 1 it must be x.c¢ = x or x.c = c¢. Every operation x, . x, . ....Xx, for
n = 3 is essentially n-ary. In fact, in the opposite case we have x; . x,.....x, = c.
Then putting x; =x, =... =x, =X, we get x;.Xx, =c — a contradiction.
Then every essentially n-ary operation is of the form x, . x, . ... . x,, which proves
our lemma.

Lemma 3. If x.x = c and x.c = x, then A can be represented as an at least
two-element Boolean group.

Proof. First we use Lemma 1. Each of the operations x; . x, . ... . X, is essentially
n-ary. Otherwise it would be x; . x, . .... x, = c. Putting ¢ on each variable x; for
i =3 we get x;.x, =c — a contradiction. So any operation in 2 is of the form
Xy o X o508 Kigs

Remark 2. If x.c = cand
1) Xy.Xp.....X, =cC forsome n=2,
thenx.x=cand x;{ . X5 .....X%,, = cform > n.

In fact, it cannot be x . x = x, because in this case, identifying all variables in (1),
we get x = ¢, which is a contradiction to Remark 1. Further in view of (1) we have
xl.xz.....x,,,=xl.xz.,...x,,.x,,+1.....xm= c.x"+1.....xm= C.

Theorem 1. If U is a groupoid (it means the operation x .y can be taken as
fundamental), then U can be represented as an at least two-element semilattice
with 0 or 1, an at least two-element Boolean group or a semigroup. fulfilling the
equalities x . x =x.c=c¢, x.y=y.x, (x.y).z=x.(y.z) and the equality
Xy.X3.....X, = c does not hold for any n 2 1.

It follows from Lemma 2, 3 and Remark 2.
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Example of the last algebra is the following algebra: we take an infinite set X and
let A be the set of all non-void subset of X. For 4, B € A we define an operation . as
follows: if An B =0,then A. B = Avu Band 4. B = X otherwise.

Lemma 4. For any natural number n > 1 and for any sequence {a,}, where
k=0,1,2,...,a, = 1for k < nanda, = 0or1 for k = n, there exists an algebra
A = (X; ., fi*1s X35 ..., X;) for i 2 n, a; = 1) such that in A we have v, = a, and
Xi.Xy.....X1s essentially k-ary for1 <k <n,n>2andx,.x, = cforn = 2.

Proof. Let G be the set of elements of a free algebra ({g;};<y,; -» ¢) With N, free
generators g in the equational class defined by the equalities: (x. y) .z = x.(y. z),

(2 X.y=y.x,
X.Xx=C.X=¢,

xl.xz.....xn-:c.

Let us denote by X = G u {b}, b ¢ G. We define the operation x . y as follows: if
X, y € G, then the operation . coincides with . in our free algebra. Letusputx.y = ¢
otherwise. Let a; # 0. We define the operation fi(x4, X,, ..., x;) as follows: for distinct
915925 - 9 it is fg1, g2, ..., g;) = b and fi(x,, ..., x;) = c otherwise. It is easy to
check that each operation f(x,, x,, ..., x;) is essentially i-ary and all required con-
ditions are satisfied.

Remark 3. The functions f; in previous proof satisfy the equation f(x, x, ..., x) =
= ¢. The following proposition will show that this property is necessary.

Proposition 1. Let U be an algebra, c € W. Let . be an essentially binary operation
in A, satisfying equations x .x = x.c = c and let in A be w; < 1 for all i. Let
n = 2. Let f(xy,...,X,) be an essentially n-ary operation in W. Then it must be
flx,x,..,x) =c

Proof. Let us suppose
(3 Flx %, ux)=x

and n is even. Putting in the operation f x = x; for i = 1,2,...,n/2 and x; = y for
remaining variables we get f(x, ..., X, y, ..., ), which is binary, symmetric because f
is symmetric, and idempotent. So, it is essentially binary and different from ., which
contradicts w, = 1.

Let us suppose now (3) and n is odd. It must be

(4) f(xh X35 X25 000y xz) = Xj.

In fact f(x,, X5, ..., x,) cannot be binary in view of w, = 1. If it were f(x;, X5, ...
«+s X3) = X,, then we would have

(5) SOy Xy vc0s Bads Kigsr o0 Xg) = Xy
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But the operation f(f(xy, X2, ..., Xp), Xp 1, - -+ X2,—4) iS essentially (2n — 1)-ary and
therefore symmetric in view of w,,_; < 1. Namely let f(f(x, X5, ..., Xp), Xps1s -
vees X25-1) be independent on xy, ..., X, Then f(f(X1, .0 Xp)s Xpp1s «vvs Xag—1) =
= f(f(X1s X15 e s X1)s Xpt1s oo X2n=1) = S(X15 Xp15 ++0s X2p=1). But f(Xg, Xpp15 .00
...s X2,—1) depends on each variable, also on x,. Thus f(f(x;, X5, .- .; X,)s Xpt 15 «-+
...s X2,—1) depends on x,, ..., X,. Let us suppose now, that the function f(f(x,, ...
cees Xp)s Xpi 1 ooes X2p—q) does not depend On X,iy, ..., Xzp—y. SO f(Xg, Xpuy, ...
coes Xag=1) = F(F(X1s X35 +e0s X1)s X1 coos Xap—g) = S(F(Xgs cens X1)s Xg5 0e0s X4) =
= f(xy, ..., X;) = Xy, which contradicts the fact, that f(x,, ..., x,) is essentially n-ary.

Thus fi{F(X1s %20 wsvs Xa)y Eyy 505 %) = JU s Bgy oney %g)s By enns Xz) = fi{Xgs %oy
...y X3) = X,. And in view of (5) we get x, = x,. Then (4) must hold.

The operation f(x,, X5, ¢, ..., ¢) is symmetric and binary, so it must be equal either
to x, . x, or c. Putting x, = ¢ we get in both cases by (4) x; = c. So formula (3) leads
to a contradiction and it must be f(x, x, ..., x) = c.

From Lemma 4 we get

Theorem 2. For every n = 2 there exists an algebra withw, = 1,k =0,1,2,3,...,
for which a set of fundamental operations can be chosen as {.,fy, fot1>---}»
where . is a binary operation and f; for i = n an essentially i-ary operation
different from x, . .... x,.

Proof. To prove this theorem it is enough to form algebras 2, from Lemma 4 for
n=234..and o, =1, k=0,1,2,... Observe that any algebra 2, satisfies
equalities (2) and all equalities of the form fi(x,,, ..., x,,) = ¢, where some of variables
X, -+ Xp, are the same, or equalities of the form ¢ = ¢, where ¢ is some proper
superposition in which operations f; appear.

2.

Now we start to examine all possible representable sequences w,, @, ®,, ... such
that w, <2 forn=0,1,2,... A sequence ay, @y, a,, ... is called representable, if
there exists an algebra % in which w, = g, for every k. From Theorem of [1] it follows
that:

Proposition 1. Every sequence wg, @y, ..., ®,, ..., Where wy, @, > 0, is repre-
sentable.

Thus let us suppose from now that w, = 0. Further we shall use the following
proposition:

Proposition 2. Let n 2 2. The alternative subgroup A, (i.e. the subgroup consisting

of all even permutations) of a symmetric group S, is the only subgroup in S, with
index 2.
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Lemma 1. Let for A wy = 0 and 0 < w,; < 2 for some k > 1. Then there exists
in A a symmetric binary operation.

Proof. Let. f(x,, X, ..., X5) be an essentially 2k-ary operation. As w,, < 2, it
must be either symmetric or it fulfils equalities f(x, x5, ..., X2) = f(x;p, Xiy, -
oees Xi,), Where (iy, iy, ..., i5) runs over all even permutations of the numbers
1,2,..., 2k (see Prop. 2). One of the equalities f(x;, X5, ..., X21) = f(X20 X20-15 - --
ceor X2, X9)s S (%15 X35+ e0s X2) = f(X2k—15 Xaks Xak—25 - +-s X3, X;) must be fulfilled,
because one of the permutations (2k, 2k — 1,...,2,1) and (2k — 1, 2k, 2k — 2, ...
..y 2, 1) is even. Now putting x; = X, = ... = X3 = X, Xqq = ... = Xg = y We
get a symmetric binary operation.

From Theorem 1 of [3] we have:

Proposition 3. If w, = 0 and there exists in W an essentially binary symmetric
operation, then w, > 0 for n = 2.

E. MARCZEWSKI calls (see [2]) a k-ary operation f quasi-symmetrical, if for each
pair I, m integers such that 1 < [ £ m < k there exists a permutation p;, p,, ..., Px

of the numbers 1, 2, ..., k such that p, = m, p,, = I and f(x, ..., x) = f(x,,, -
..+ X,,)- He proved

Proposition 4. If there are no algebraic constants and f is a k-ary quasi-sym-
metrical operation in an algebra U, then every iteration of the form f(f(xy, ..., X;),
Yas oos Vi) S(F(f(X15 - os Xi)s Y2 <05 Yi)s Z25 « -5 Z4), - . depends on each variable.

J. Plonka called my attention to the fact, that Proposition 4 is valid for the func-
tions f(x,, x,, ..., X,), for which the group of all permutations ¢, such that

f(xls seey xn) = f(x¢(1)’ sieiey xv’('l)) ’

is transitive. One can prove this assertion only by formal alternations in the proof of
Proposition 4.

Remark 1. In our algebras with w, = 2 there hold f(x,, X5, ..., %) = f(xi,, --
-es X ), Where iy, ..., i, runs over all even permutations of the numbers 1,2, ...,k
and f(x3, Xy, X3, ..., %) = f(X;,, ..., Xj,), where jy, ..., j, runs over all odd permuta-
tions of the numbers 1,2, ..., k. For k > 3 every operation f with this property is
quasi-symmetrical.

Lemma 2. If w, = 0, w, < 2 for every n, w,, = 0 for n > 1 and there exists an
essentially (2k + 1)-ary operation f(xy, X, ..., Xa34+1) for k 2 1 in U, then there
exists an essentially ternary operation in U and it is w,,,, > 0 for every n.

Proof. In view of 0 < w4, £ 2 and Proposition 2 we have

(6) f(xl’ X25 ¢e0s x2k+l) = f(x3a X1y X5 Xg5 000y x2k+l) .
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First we prove that there exists an essentially ternary operation in 2. If k = 1, the
given operation f is essentially ternary. Suppose k > 1. Consider the operation

(7) f(xl’ X25 X35 )5 005 y)

In view of (6) the operation (7) depends on each variable x,, X,, x; or none of them.
If it depends, the operation (7) is essentially ternary, because of w, = 0. If (7) does
not depend on X, x,, X5, then it must be f(x,, X,, X3, ¥, ..., ¥) = y or g(y), where
g(y) is a non-trivial function. Consider the operation

(8) f(f(xl’ X250y Xog+ 1)9 Xok+2s 005 Xag+ 1) .

By Proposition 4 and Remark 1 it follows that (8) is essentially (4k + 1)-ary. Thus
every even permutation of variables of (8) is admitted. So we can write one of the
following equalities:

f(f(xla X325 +e0s xzk+1)a X2k+25 + 4 x4k+1) =

= f(f(xp X25 X35 X2k+45 -2 x4k+1)s X2k+25 X2k+35 X45 -+ 0» x2k+l)

or
f(f(xb X35 000y x2k+1)9 Xok+25 s x4k+1) =
= f(f(xn X2s X35 X2k +45 -+ 2» x4k+1)’ X2k+25 X2k+3s X55 Xg5 Xgy + 005 x2k+1) .
Puttlng x4 = x5 = see = ka+1 = y and ka+4 = x2k+5 = hle = X4k+1 = Z W¢ get

z = y or g(z) = g(y), which contradicts w, = 0. Thus the operation (7) is essentially
ternary. Let us denote it f*(x,, x,, ;). By (6) it is cyclic, so, by Propos. 4 and Remark
1wy,4+q > Oforeveryn > 0.

Lemma 3. If for an algebra A one has wy = 0, 0, =1, w, =2, w3 <2 and . is
an essentially binary operation, then . is diagonal, it means it fulfils equalities:

X.x=%, X.(0.8)=(x.y).2=x.2.

Proof. Operation . is not symmetric. Otherwise there would exist two symmetric
essentially binary operations and at least eight essentially ternary operations (see (4),
Lemma 4), which contradicts our assumption w; < 2.

If one of the operations (x . y).z and x . (y . z) is essentially ternary, say the first
of them, then we have by the assumption w; < 2 and Proposition 2

9 (x.¥.z=(z.x).y=(.2).x.
Thus x.y=(x.y).(x.y)=[x.»).x].y=[(x.%).y].y=(x.»).y=
=(y.y).x = y.x against the first part of this proof. Hence none of the operations

(x.9).2z, x.(y.z) is essentially ternary and from the assumption of our Lemma
and Theorem 2 from (5) it follows that . is diagonal.
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Lemmad. If w, =0, w, =1, w3 £ 2, . is not symmetric, essentially binary
operation and there exists an essentially ternary operation f(xy, X,, X3), then there
exist at least 20 essentially 6-ary operations.

Proof. As w; < 2, by Proposition 2 f(x,, x,, x;) satisfies

(10) F(x4, X35 X3) = f(x35 Xg, X2) = f (%20 X3, X3) -

Consider g(xy, X, ..., Xg) = f(X1, X2, X3) . f(X4, X5, X¢). If g does not depend on x,,
then by (10) it does not depend on x,, x5. Putting x; = x, = X3 = X, X, = X5 =
= X¢ = yand then x; = x, = x3 =2, X, = X5 = Xg =y weobtainx.y=1z.y.
Hence . is not essentially binary. Thus g must depend on x,, x,, X5 and analogously
it must depend on x4, X5, X. Thus g is an essentially 6-ary operation. If we had
F(X1s X35 X3) - [(X4s X355 X6) = [(X4s X2, X3) . f(%4, X5, Xg), then it would be g(x,,
KHgs 5o Xg) = Xy XigsX2) « g3 %15 %5) = F (s Xas 3) » J(Xas Xys X5) = J(325 %65 %) «
. f(xsv X35 xl) = f(x_‘n X6s x4) 'f(x2’ X35 xl) = f(x4, X5, x6) 'f(xl, X2, X3).

Putting x; = X, = X3 = X, X, = X5 = Xg = y we get x.y = y.x against the
assumption about .. So we have at least (§) = 20 essentially 6-ary operations
(i X4y X4,) - f(%i5 Xi45 X;), Where all i, are different and for different choices of
numbers iy, i,, i; we get different operations.

Theorem 1. If wy =0, w; = 1, w, = 2 and w, £ 2 for n > 2, then w, = 0 for
n > 2 and the sequence 0,1,2,0,... is representable by a non-trivial diagonal
semigroup and reversely every algebra representing this sequence is non-trivial
diagonal semigroup.

Proof. By Lemma 3 there exists a non-trivial diagonal operation x . y and it is
clearly not symmetric. By Lemma 1 we get w,, = 0 for n > 1. Lemma 4 implies
w; = 0 and Lemma 2 implies w,,,; = 0forn = 1.

Corollary 1. If wy = 0, w; = 1, w, = 0, w, < 2 for n > 2, then the only possible
sequences are the following: 0,1,0,... and 0,1,0,1,0,1,..., where a trivial
algebra gives a realisation of the sequence 0, 1,0, 0, ... and an at least two-element
Boolean group with the operation x,; + x, + x3 taken as fundamental gives the
unique realisation of the other sequence.

Proof. From Lemma 1 it follows that w,, = 0. So the corollary follows form
Theorem 1 and 2 of URBANIK (see [7]).

Lemma 5. Let w, = 0, w, = 1 and let there exist in A a symmetric and associative
. . - n
binary operation .. Suppose that we have a sequence of operations f* (%45 X235+
. . n-1 1
eois Xn), such that every f¥(xi, Xy, ..., Xsn) is symmetric, f>"(f* (05 %5s.0es
1 -1 2 n-1,s 2n 2n 2n . .
cory Rgmei)s Fo (X35 X5y wnes Xoamtly s sd o (X1 5 X5 s ve0s Kgn-2)) 48 Symmetric and
fzn _ Th 2n —
(% Xy cees Xy Yy ¥y ey ¥) = X . Y. Then f2 (x4, X35 000y Xgn) = Xg o X3 cev v Xane
2n=1—times 27~ 1—times
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Proof. For n = 1 the lemma is obvious. Suppose that it is true for some n.. Then
we have o

fzn*l(xl, x2, soey xZn+l) = f2n§l(f2'l(x1, xl, eeey xl),fzn(xZ, xz, ey xl), XY

g T2 (Xgnwny Xgne g s Xgana)) = il F i P AP,

fzn(xl, X2y euey xz..), . ..,fzn(x2n+l, Xong2s eony x2n+1), ...) =

2n+1
= POy o Ky own o Xigus, Ky« Ky s wns s Figws aiy Xy 5 Xz romi s K
Xongq+Xgng2 e oo e Xontty ooy Xongqg e Xogngpg e onns X2u+l) =
= xl e X2 e oo Xone Xangg .x2n+2. cee e Xon+t .

Theorem 2. If wy =0, w; = 1, 0w, = 1, w, £ 2 forn > 2, then w, = 1 forn > 2
and an at least two-element semilattice gives the unique realisation of the sequence
0,1,1,1,... between groupoids.

Proof. Suppositions w, = 1 and w, < 2 imply that all operations are symmetric.
Namely x . y is symmetric, X; . X, . .... X, is then an essentially k-ary symmetric
operation. So if there exists further essentially k-ary algebraic operation f(x;, X, ...
..., X;) it must be symmetric, too. Further the operation . is associative because
of w; £ 2. Namely by Proposition 2, it fulfils (9). Thus we have (x. y).z = (y. z).
.x =x.(y.z), hence . is associative.

Now let for every n f2" be an arbitrary essentially 2"-ary operation of . Then the
sequence { %"} satisfies the assumptions of Lemma 5 and hence f2"(x, x,, ..., X3n) =
= X;.Xp..... Xz Thus ,, = 1. Consider the operation f(x, X5, ..., X;) . X - ---
.... X, This operation si essentially 2"-ary what can be checked by suitable identi-

fication. So it must be f(Xy, X5, ... X3) . Xgq o oor o Xan = Xq . X5.0eu. Xpn Put
Xp41 = Xppz2 = ... =Xgn =), We have f(X4, %3 ..., %). Y =% .%.....%. ).
Thus f(%ogs X5 0o X = (15 %5 55 XY o J{Hge Xz oois X)) = Xy o XBgo ovs + Xgo
o g X evns Kg) = FKigs Wiy s X ) Xy 5 By o wvin By = Ky o X5 c0vi00 Ky By o Xy« w00
ver o Xg = Xy .X5.....%. Hence w, = 1 for every n > 2.

Theorem 3. If w, £ 2forn =0, 1, 2, ..., then sequences having algebraic realisa-
tion are exactly one the following forms:
1) wo >0, 0, > 0, w, arbitrary for n > 1;
2) wp=0,0, =1,w,=0forn>1;
3 wo=0,0,=1fornz1;
4) w3, = 0, w3,41 = 1forn 2 0;
5) wo=0,0, =1, 0, =2, 0,=0forn>2;
6) wp=0,0, =2,w,21forn>1;
7) wo=0 0 =2 0,=0forn>1;
8) wo=0,0, =2,0, =2,w,=0forn>2
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