Werk Label: Article **Jahr:** 1973 **PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log28 ## **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen ## ON THE MINIMUM NUMBER OF VERTICES AND EDGES IN A GRAPH WITH A GIVEN NUMBER OF SPANNING TREES Ladislav Nebeský, Praha (Received May 31, 1971) By a graph we shall mean a finite connected undirected graph without loops and multiple edges (for notions and results of graph theory see, for example, [1] or [2]). If p, q and r are integers such that $1 \le p \le q \le r$ and $2 \le q$ then by D(p, q, r) we shall denote the graph with cyclomatic number 2 and with no separating vertex and such that its two vertices of degree 3 are connected to each other by arcs ([2]) of length p, q and r; the graph D(p, q, r) has of course p + q + r - 1 vertices, p + q + r edges and pq + qr + pr spanning trees. In the following, by x we shall denote a positive integer other than 2. By $\alpha(x)$ we denote the smallest number y_1 such that there is a graph having y_1 vertices and x spanning trees; by $\beta(x)$ we denote the smallest number y_2 such that there is a graph having y_2 edges and x spanning trees. Obviously $\alpha(x) \leq \beta(x) \leq x$, for any $x \geq 3$. The function α has been studied by J. Sedláček [3], who also gave an impulse to the rise of the present paper. The very simple generalization of one of the procedures used in [3] for the estimate of the function α leads to the following estimate of the function β which is given by graphs with at least one separating vertex: if x_1 and x_2 are integers and $x_1, x_2 \ge 3$, then (1) $$\beta(x_1x_2) \leq \beta(x_1) + \beta(x_2).$$ By making use of the graph D(1, 2, (x - 2)/3) and a graph with no separating edge and with two circuits of length 3 and x/3, J. Sedláček [3] found an upper estimate of the function α for almost all $x \equiv 2$, 3 (mod 3). By using the same graphs it is quite readily possible to find an estimate of the function β for the same values of the argument: (2) if $$x \equiv 2 \pmod{3}$$, $x \ge 8$, then $\beta(x) \le (x + 7)/3$; (3) if $$x \equiv 3 \pmod{3}$$, $x \ge 9$, then $\beta(x) \le (x + 9)/3$. Estimate (3) of course also follows from estimate (1). Upper estimates of the func- tion β (and hence also the function α) for almost all $x \equiv 1 \pmod{3}$ are given by the following lemma. Lemma. It holds that: ``` (4) if x \equiv 1 \pmod{30}, x \geq 91, then \beta(x) \leq (x + 269)/30; (5) if x \equiv 16 \pmod{30}, x \geq 106, then \beta(x) \leq (x + 254)/30; (6) if x \equiv 4 \pmod{30}, x \geq 64, then \beta(x) \leq (x + 206)/30; (7) if x \equiv 19 \pmod{30}, x \geq 79, then \beta(x) \leq (x + 221)/30; (8) if x \equiv 7 \pmod{15}, x \geq 37, then \beta(x) \leq (x + 98)/15; (9) if x \equiv 10 \pmod{15}, x \geq 40, then \beta(x) \leq (x + 110)/15; (10) if x \equiv 13 \pmod{15}, x \geq 43, then \beta(x) \leq (x + 92)/15. ``` Proof. By G_1 we denote the graph with 10 vertices a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , b_3 , b_4 , b_5 , c_0 and 11 edges c_0a_1 , a_1a_2 , a_2a_3 , a_3a_4 , a_4c_0 , c_0b_1 , b_1b_2 , b_2b_3 , b_3b_4 , b_4b_5 , b_5c_0 ; G_1 obviously has 30 spanning trees. By G_2 we denote the graph with 6 vertices a_1 , a_2 , a_3 , b_1 , b_2 , b_3 and with 8 edges a_1a_2 , a_2a_3 , a_3a_1 , b_1b_2 , b_2b_3 , b_3b_1 , a_1b_1 , a_3b_3 ; G_2 obviously has 30 spanning trees. By G_3 we denote the graph with 7 vertices a_1 , a_2 , b_1 , b_2 , b_3 , b_4 , c_0 and 8 edges c_0a_1 , a_1a_2 , a_2c_0 , c_0b_1 , b_1b_2 , b_2b_3 , b_3b_4 , b_4c_0 ; G_3 obviously has 15 spanning trees. We now construct graphs G_4 , ..., G_{10} such that in any one of the graphs G_i , i = 1, 2, 3, we select vertices v and v, and then complete the respective graph G_i by j - 1 vertices and j edges so that the vertices v and v are connected to each other by an arc of length v of which every inner vertex is different from all vertices of the graph G_i . We obtain the graph G_4 , ..., G_{10} , by selecting v, v and v as follows (v is, of course, always an integer): $$G_4$$: $i = 1$, $v = a_2$, $w = b_1$, $j = (x - 61)/30 \ge 1$; G_5 : $i = 1$, $v = a_2$, $w = b_2$, $j = (x - 76)/30 \ge 1$; G_6 : $i = 2$, $v = a_1$, $w = b_2$, $j = (x - 34)/30 \ge 1$; G_7 : $i = 2$, $v = a_1$, $w = a_2$, $j = (x - 19)/30 \ge 2$; G_8 : $i = 3$, $v = a_1$, $w = b_1$, $j = (x - 22)/15 \ge 1$; G_9 : $i = 3$, $v = a_1$, $w = a_2$, $j = (x - 10)/15 \ge 2$; G_{10} : $i = 3$, $v = a_1$, $w = b_2$, $j = (x - 28)/15 \ge 1$. There is little difficulty in seeing that the numbers of edges of the graphs $G_4, ..., G_{10}$ give successively estimations (4)–(10). **Theorem 1.** If x = 1, then $\alpha(x) = 1$, $\beta(x) = 0$; if x is one of the numbers 3, 4, 5, 6, 7, 10, 13, 22, then (11) $$\alpha(x) = \beta(x) = x;$$