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INDEFINITE HARMONIC CONTINUATION

Joser KRAL and JAROSLAV LUKES, Praha
(Received May 24, 1971)

The purpose of this note is to characterize harmonic spaces whose harmonic
functions admit indefinite harmonic continuation.

In the classical potential theory harmonic functions are defined as continuous
solutions of the Laplace differential equation. In the one-dimensional case these
functions reduce to locally affine functions and any harmonic (=affine) function on
an interval of the real line R! can thus be harmonically continued onto the whole
of R'. We are going to describe all topological spaces which have a similar exceptional
property (analoguous to that of the real line in the classical case) in the framework
of the Brelot axiomatic theory of harmonic functions.

By a Brelot space we mean a locally compact and locally connected Hausdorff
topological space X which is equipped with a sheaf 5 associating with each open
set U = X a real vector — space .#(U) of continuous functions, termed harmonic
functions on U, such that the sheaf axiom, the basis axiom and the Brelot convergence
axiom are satisfied. We shall say that a Brelot space (X, #) has the continuation
property CP if and only if each point x € X is contained in a domain (=open and
connected set) D = X such that each harmonic function defined on an arbitrary
subdomain of D can be harmonically continued onto D. More precisely: Whenever
D, = D is a domain and h, € #/(D,), then there is an h e #/(D) such that hy =
= Restp, h (= the restriction of h to D). It is known that if X is a 1-dimensional
manifold, then every Brelot space (X, #) has CP (cf. [5]), and one may naturally ask
whether there are other Brelot spaces possessing CP, besides those defined on 1-
dimensional manifolds. We are going to show that such spaces can be completely
described and, as shown by the following theorem, cannot topologically deviate
much from 1-dimensional manifolds.

Theorem. A Brelot space (X, 5#) enjoys CP if and only if for every x € X there is

a finite number n 2 2 (depending on x) of arcs') Cy, ..., C, in X such that ) C,
i=1

1) By an arc in X we mean a subspace C — X which is homeomorphic with the segment
{,aeR0<a<1}.
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is a neighborhood of x in X and
C;nC;={x} whenever 1<i<j=<n.

We shall see that the sufficiency of the above condition can be proved quite easily.
Its necessity, however, requires some preliminary investigations (note that X is
a general locally compact and locally connected space which is not assumed to have
a countable base).

We shall first assume in sections 1—5 that (X, #) is a Brelot space with a con-
nected X satisfying the following condition:

(C) For every domain D, = X and every h, € #(D,) there is an h € #(X) such
that Rest, h = h,.

We shall prove several auxiliary results describing properties of such an X. For
M < X we denote by M and M* the closure and the boundary of M, respectively.
%(M) will stand for the Banach space of all bounded continuous real-valued functions
on M with the usual supremum norm. The number (possibly zero or infinite) of all
points in M will be denoted by n(M) (0 < n(M) < ). Let us recall that an open set
U < X is termed regular if it is relatively compact, U* + @ and for each f e ¢(U*)
there is a uniquely determined H} e 4(U) such that Resty H} € #(U), Restye HY = f
and, besides that, H; > 0 whenever f = 0.

1. Lemma. If Dy, D, are regular domains such that

(1) Dy = Dy,
then n(D3) < n(DY). If, moreover,
(2) BO o= Dl N

then n(D3) < 0.
Proof. Assuming (1) we define the mapping T of 4(D?) into €(D3) by
Tf = RestpH}', fe¥%(D}).

Clearly, T is a continuous linear mapping. Given an arbitrary g € ¢(Dg) we may
apply to hy = Restp, H 2o the process of harmonic continuation described in (C) so
as to get an h € o#(X) with Rest, h = ho. Clearly, g = Restp . h = Tf, where f =
= Restp,. he ¢(D}). We see that T maps (DY) onto (D). The assumption
n(D}Y) < n(Dg) would mean that D7} is finite and the dimension of €(D?}) is less
than the dimension of ¢(Dj) (which is the image of (DY) under T) — a contradiction.
Now assume (2) and denote by -

B, = {f:fe%4(D})), |f| <1}

the unit ball in ¢(D?Y). By the Harnack principle, the image of B, under T is a relatively
compact set TB, in €(D3). On the other hand, the Banach theorem assures that T
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is open, because it maps ¢(D?) onto ¢(D}). We conclude that the unit ball in €(Dg)
is relatively compact and this implies n(D§) < oco.

2. Lemma. If D is a regular domain, then 1 < n(D*) < oo and D is contained
in a domain on which there exists a positive potential.

Proof. Fix a regular domain D, y € D and another regular domain D, such that
y€ Dy, Dy = D. Suppose that n(D*) = 1. By preceding lemma also n(Dg) = 1,
say Dg = {z}. Choose x e D\ D, and denote by C, and C, that component of
D~ {z} which contains x and y, respectively. The equality C, = C, = C would mean
that C n Dy = C n D, is open and closed in C and y € C n Dy, x € C\ D,, which
is a contradiction. We have thus

C.nC,=90, zeC,nC,.

Next choose a regular domain D, such that ze D,, D, = D\{x, y}. Then C, n D, *
+ 0+ Cy,n D,and xe C,\ D,, ye C,\ D,, so that the boundary of D, must meet
both C, and C,. Consequently, n(D}) = 2 > n(D*), which violates lemma 1. This
contradiction proves the inequality n(D*) > 1.

Since D* contains at least two points, we may fix two strictly positive linearly
independent functions f;, f, € (D*) and employ (C) to continue H7, and HJ,
harmonically onto the whole of X obtaining thus h; and h, in .%’(X), respectively.
Both h, and h, being positive on D we may fix a domain D, > D such that h, and h,
remain positive on D;. Since h, and h, are non-proportional on D,, we conclude that
there is a positive potential on the harmonic space (D,, Restp, 3#) (= the restriction
of the harmonic space (X, #) to D,). Applying proposition 7.1 of R. M. HERVE [4]
(cf. p. 440) we get a regular domain D, < D, such that D < D, which, by lemma 1,
guarantees n(D*) < co.

3. Lemma. Let D # 0 be a relatively compact domain, F € €(D), Restp, F € #(D)
and suppose that the constant functions are harmonic on D. If real numbers u, v
do not belong to F(D*) and satisfy the inequalities

min F(D*) < u < v < max F(D*),
then the system S of all components of

D, ={z:zeD, u'< F(z) < v}
is finite.

Proof. Denote by d, the distance of u from E, = {v} U F(D*). Similarly, let d,
denote the distance of v from E, = {u} u F(D*). With each x € D,, we associate an
open neighborhood D, as follows. If x € D,, then D, is the component of D,, con-
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taining x. If x € D, then D, will be an open set containing x such that the diameter
of F(D n D,) is less than 4 min (d,, d,). The system

(3 {D,;xe D,}
must contain a finite subcover
4) Dysses Dy,

of the compact D,,. Suppose that there is a component C of D,, such that F(C*) n
N {u,v} = 0. Then C is closed in D and, consequently, C = D = D,,, which is im-
possible, because the inequalities min F(D*) < u, v < max F(D¥*) guarantee that D,,
is a proper subset of D.

We have thus

F(C*) r {u, v} + 0

for every C € S. Consider now an arbitrary C € S and suppose, for definiteness, that
ve F(C*) (the case ue F(C*) may be settled by a symmetric argument). Since
F(C) « F(D,,) = {a;aeR', a < v}, F cannot be constant on C and the minimum
principle together with the inclusions F(C*) = {u, v} U F(D*) imply F(C*)nE, 0.
C being connected we conclude that there is a z € C with

|F(z) — | = 44, .

If xeD}(c D*uU{y;yeD, F(y) =u or F(y) =v}), then F(x)e{v} UE, and
|F(x) — F(z)| = 4d,, so that z ¢ D,. We see that C is the only element of (3) con-
taining z. Thus C must occur in (4) and S < {D,,, ..., D, }.

4. Lemma. Every regular domain (considered as a subspace of X) has a countable
basis.

Proof. Let D be a regular domain. Then there is a (strictly) positive hy € ‘6(13)
which is harmonic on D. Employing the harmonic continuation (see (C)) we get an
h € #(X) with Resty b = h,. There is a domain D; > D such that h remains positive
on D;. Passing from the Brelot space (D, Rest, 3#) to the new space whose
harmonic functions are obtained by the standard procedure of dividing the original
harmonic functions by h, we get a connected Brelot space enjoying (C) on which
constant functions are harmonic; besides that, D is again a regular domain in the
new space. This consideration shows that we may assume for the proof of our lemma
that the constant functions are harmonic on X. We know from lemma 2 that D* =
= {Xy, ..., X,} is finite. '

With each n-tuple of rational numbers [r,, ..., ,] = r we associate an F, e (D)
which is harmonic on D and satisfies

F(x)=r;, 15j<n.
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If, besides that, the rational numbers u, v satisfy the conditions

(5) minr; <u <v < maxr;,
Y i
(6) {u,0} " {ry,...r} =0,

then we denote by S], the system of all components of {z;z€ D, u < F(z) < v}.

r

In view lemma 3, S}, is finite, so that the system
S = USL

(where r = [ry, ..., r,,] runs over all n-tuples of rational numbers and u, v run over
all pairs of rational numbers satisfying the corresponding conditions (5), (6)) is
countable. We are going to prove that S is a basis of D. Let z be an arbitrary point
in D and let U be an arbitrary regular domain such that ze U < U < D. According
to lemmas 1 and 2, U* = {y, ..., y,}, where 2 < s < n. Define g € (U*) by

g(y)) =1, g(yn)=0 for 2<k<s.
Then
0<HJ(z) <1,

because constants are harmonic on D > U. Fix ¢ > 0 small enough to secure
2t <HJ(z) <1 -2

and apply harmonic continuation to get an h e %(D) with Resty, h € #(D) and
Restg h = H;’. Noting that h = Hy on D and making use of the fact that the values
attained by H }’ at the points y, ..., ¥,, z depend continuously on f € ¢(D*), we choose
rational numbers r; approximating the values h(x;) (1 < j < n) in such a way that
the following inequalities hold for F, corresponding to r = [ry, ..., 1]

|F(z) — HJ(2)| <&, |F»)—g(n) <e, 1=kS<s.
Then

(7) F(y))>1—¢>F[(z) >e>max{F(y);2< k <s}.

Further choose rational numbers u, v satisfying (6) and

(8) e<u<F(z)<v<l-eg,

so that u, ve F(D) = {a; aeR', minr; < @ < max r;}. Let C be the component

J j
of {w; we D, u < F,(w) < v} containing z. In view of (7), (8), F,(U*) does not meet
F/(C) c {a; aeR', u < a < v}. Consequently, U* n C = @ and C < U, because
ze Cn U. We have thus found a Ce S with ze C = U, which shows that S is
a basis.
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5. Lemma. If D,, D, are arbitrary domains contained in a regular domain, then

-

D, c D, = n(D}) < n(D}).

Proof. Suppose that n(DY) > n(D}) for a couple of domains D; = D, contained
in a regular domain D. Let D} = {z,, ..., z,}, choose an (s + 1)-tuple of points
X1, ... X541 € DY and associate with every i a connected neighborhood V; of x; such
that V,, ..., ¥, are mutually disjoint. Further choose y,;eV;n D, (i=1,...,s + 1)
and consider the compact K = {y,, ..., y,+1}. By lemma 2, D is contained in a Brelot
space carrying a positive potential. This permits us to apply proposition 7.1 of R. M.
HERVE [4] guaranteeing the existence of a regular domain D, with K = Dy, Dy = D,.
In view of lemma 2, n(Dj) < co. Since every V; meets both D, (note that y;e
€ V; n D,) and its complement (note that x; € V;\ D), we conclude that ¥; n D* % 0
so that Dj must contain at lest s + 1 different points u,, ..., tg, ;.

Define f; € ¢(D3) by
flu) =1, f(Dg — {u}) = {0}

and apply harmonic continuation (see (C)) to H7° so as to obtain an h; e #(X) with
Restpoh; = f; (i = 1,...,s + 1). Since D contains only s elements, we may fix real
constants a, ..., a1, not all zero, such that

= alhl + ... + as+1hs+,

vanishes identically on D}. By the minimum principle (which is applicable, because
D, = D and D is regular) we conclude that h = 0 on D,. In particular, 0 = h(u,) =
=a;(i =1,...,s + 1), which is a contradiction.

Now we are in position to prove the following

6. Proposition. If the space X is connected and the Brelot space (X, #) satisfies

(C), then every xe€X has a neighborhood of the form \J C;, where n = 2 and
i=1
Cy, ..., C, are arcs in X (whose number depends on the choice of x € X) such that

9) C;nC;={x} whenever 1<i<j=<n.

Proof. Consider an arbitrary point x € X and fix a regular domain D, 3 x. It
follows easily from lemma 5 that there is a regular domain D with xe D =« D = D,
such that n(Dj) = n(D*) for every domain D, satisfying x € Dy = D. In view of
lemma 4, D is a metrizable continuum. Let y be an arbitrary point in D* and let D,
be an arbitrary regular domain containing y. Since n(D*) + n(D3) < oo, the bound-
ary of D n D, in the space D is finite. We see that y has in D arbitrarily small
neighbourhoods with a finite boundary, whence it follows (see [6], p. 209) that D is
locally connected at y. Thus D is a locally connected metrizable continuum such that
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every sufficiently small neighborhood of x in D has at least n = n(D*) 2 2 boundary
points. Employing the so-called “n-Beinsatz” of K. MENGER (cf. [6], p. 203) we con-
clude that there are arcs Cy, ..., C, in D satisfying (9). Denote by y; the end-point
of C; different from x and choose a domain U < D containing x such that

Un{y,..oyp=90.
Order C; naturally from x to y; and denote by x; the first pomt on C,; belonging to
C\U (i =1,...,n). Assuming U\ U C; *+ 0 we fix xoe U\ U C; and choose an

i=1
arc C, connecting x and x, in U; thls is possible, because U is arc-wise connected

(see [6], § 45, pp. 182, 184). Let U be the component of U\ {x,} containing x and
denote by C; the component of C;\ {x;} containing x (0 < j £ n). Then

Uc, 0
j=0

and {%g, %ys oo %y} € U*, which contradicts lemma 5, because the domain 0 < D

n n

cannot have more than n boundary points. Thus U = (J C; and {J C; is a neighbor-
i=1 i=1
hood of x.

Now it is easy to present a proof of the theorem. Applying proposition 6 locally
one immediately obtains the ““only if” part of the theorem. In order to prove the
“if” part of the theorem consider an arbitrary point x € X and fix the arcs Cy, ..., C,

satisfying (9) such that | C; is a neighborhood of x. We may clearly suppose that the
i=1

interior D of |J C; is a regular domain; the proof will be complete if we show that
i=1

every hy € #(D,) defined on a subdomain Dy, > D can be harmonically continued
so as to yield an h e #(D). This is celar if x € Dy, because then C; = C; n D\ {x}
are one-dimensional manifolds and, by [5] (see lemma 1.21), h, can be continued
harmonically from C; n Do\ {x} onto C; for i = 1,...,n. If x ¢ D, then D, can
meet only one of the arcs, say C,, and we may continue h, harmonically onto C,.
Let C;\ D = {x;} (i = 1, ..., n) and define f,, f, € €(D*) by

£1(D*) = {1} = fo(D*N{x1}) , folx1) = 0.

Then HJ(x) > 0 and H}, H}, are easily seen to be linearly independent on C,.
Consequently, one may choose real constants a,, a, such that h, = a,H}’o +

+ a,H} on C, (see [5], lemma 1.6) and a,H}, + a,H}, yields the required extension
of h.

Corollary. In order that a Brelot space (X, ) possess the following property
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