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(Continuation)**)

4. WEAKLY NONLINEAR BOUNDARY VALUE PROBLEM

Notation. Given a B-space # with the norm |.
{ue®:|u— uo|e < o} is denoted by %(u,, ; A).

|@ o€ # and @ > 0, the set

Definition 4,1. Let #,, #, be B-spaces and let &, > 0. An operator F :ue %,,
e€[0,g,] - F(€) (u) € @, is said to be locally lipschitzian in u near & = 0 if, given
an arbitrary u, € 4#,, there exist auo) > 0, o(4o) > 0 and &(u,) > O such that

[F(e) (u2) = F(e) (u1)]a, = o) [u2 = ui]a,

for all uy, u, € U(uo, o(uo); #,) and € € [0, &(ug)].
Hereafter we suppose

() Ac 2, Ge L [@V], Le@V,, (m=n).
The mappings

®:xecH€, ce[0,g] > DE)(x)e L,
A:xed€, c€[0,8] - Ale) (x)e 2,

are locally lipschitzian in x near ¢ = 0 and continuous in & € [0, g0 for any
x € L€ fixed, g, > 0.

. *) The last paragraph (§ 5) was added.
**) The first part was published in this Cas. p&st. mat. 97 (1972), 399—419.
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Let us consider the weakly nonlinear boundary value problem (2,)
4.1) %= A()x + J "[4,6(t, )] x(5) + £ 0(e) (x) (1)
42) j "TALE)] %(6) + £ Ale) () = 0,

where € = 0 is a small parameter.

We proceed formally as in § 3 and write the problem (£,) in the equivalent form as
the system of equations for x € #%, he £* and ce &,

43)  —x(i) + X(c + | X(0) X~'(s) h(s) ds + ePofe) (x) (1) = 0.

i)+ (e + (KG9 Hs)ds  +ePy(e) (9 () = 0,

Co+ [Hy)h()ds  +eP(e)(x) =0,

where X(f) has the same meanir:; as before ((3,3)) and
69 = [TaoeNxe, 1m0 = ([ we1xe) o,
k() = ([Tse N x@), c = [T xe.

P () (O = X [ X000 (99 ¢,
P O = [ 10.66.91 (x0) [ X710) 96 (9 () 40) =
- [ ([t o x0)) x40 06 0 @) s = [ KG9 90 0 085,
P = A + | :[dL(sn (x6) [ ¥~ 0 €92 do) =
=20 + | ( | :[dL(cn X(9)) X716) 86) () () ds =
- A () + [ 7 06) () (s
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By assumptions of this paragraph K € #,, H, and H, € 2:,,, and P,, P, and P, are
mappings of #€ x [0, g,] into /€, £ and &, respectively, locally lipschitzian in x
near € = 0 and continuous in € € [0, &,] for any x € &% fixed. For example, in the
case of P, we have for x,, x, € &%, te J and g, &, € [0, ]

|1P1(e2) (x2) (1) = Pilesr) (x1) ())]] < B varg G(1, ) [[@(e2) (x2) — ®(ey) ol

where B = sup || X(¢) X ~'(s)||. Hence
t,seJ

1P1(e2) (x2) — Piey) ()] = a|@(e2) (x2) — D(ey) (x1)]1 »

a = B||vark G(¢, )| -

Let Koe %,, K, € £;, and K, € £7., be again such that K(t, 5) = K(t, s) +
+ K;(t) K,(s), |||Ko||| < 1. Let " be the resolvent kernel of K, and let i, and K, be
again defined by (3,10). (Fe %,, H, € %2, and K, € £}, of course.) Then the
system (4,3) becomes

(4,5) —x(t) + U(t) b + €Ry(e) (x) (1) = 0,
Bb + ¢R(g) (x) =0,

where

where B is given by (4,4), (3,9), (3,10) and (3,12),

t

46)  U(t) = (X(t) [1 + J X~(s) fy(s) ds], (1) J‘:X'l(s) R(5) ds),

a

Re(e) (x) () = Pofe) (x) (1) + X() j X71(5) Pye) (5) (5) ds

( j "Raf9) Pule) () (5) ds
R() () = [ , ,
Po(e) (x) + f B,(5) P(e) (x) () ds

Hy(1) = Hy(t) + J‘bl-}z(s) I'(s,1)ds, K,(t) = K,(t) + ‘er(s) I'(s, t)ds,
W) = Hy(f) e + Ri(i)d + ¢ [Pl(e) 9 () + _[ "T(t, ) Py(e) () (5) ds],

d= J.sz(s) h(s)ds, b =(c',d")".

Clearly, U(?) is absolutely continuous on J, A, € %2, K,e £}, R, and R are
mappings of ¢ x [0, €0 into #% and &,,,, respectively, locally lipschitzian in x
near &€ = 0 and continuous in € € [0, €] for any x € #/¥ fixed.
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The further investigation of our problem rather depends on whether det B + 0
or det B = 0. In the former simple (so called noncritical) case the following theorem
holds.

Theorem 4,1. Let the boundary value problem (2,) be given and let the assumptions
(s#) be fulfilled. Let the limit problem (2,) have only the trivial solution. Then
there exists €* > 0 such that for any ¢ € [0, €*] there exists a unique solution x
of (2.), while ||x¥| ¢ — 0 for e > 0+.

Proof. Let (g’o) have only the trivial solution. Then by Corollary 1 of Theorem 3,1
det B # 0 and (4,5) becomes

x(1) = e[Ro(e) (x) (1) — U(t) B™" R(e) (x)] = £T(e) (x) (1) -

It follows immediately from the above argument that the operator T: o% x
x [0, &y] = % is locally lipschitzian in x near ¢ = 0 and continuous in € € [0, &, ]
for any x € /% fixed. Hence the fixed point theorem for contractive operators ([8])
can be applied.

Remark 4,1. The given boundary value problem (2,) is certainly noncritical e.g.
if in (4,3) '

a) det C #+ 0 and 1 is not an eigenvalue of K(t, s) — H,(t) C™* H,(s),

b) 1 is not an eigenvalue of K and

det (c + j "Hy(5) [Hl(s) + f :Q(s, o) Hy(0) dc] ds) +o0,

where Q is the resolvent kernel of K.

In the critical case (det B = 0) some further notations are needed.

Notation. /", denotes the naturally ordered set {1, 2, ..., n + n'}. If & is a natural-
ly ordered subset of A"y, then &* denotes the naturally ordered complement of &
with respect to Ao. The number of elements of a set & < A", is denoted by y(&).
Let C = (¢;,;)i,jew, b€ an (n + n’) x (n + n’)-matrix and let & <= N, ¥ = N,
then C , denotes the matrix (¢; ;)ics, jey- Similarly if b is an (n + n’)-vector (b =
= (b;)jexo) and & <= N, then by = (b))jcs. (Analogously for matrix or vector
functions and operators.) A~ denotes the naturally ordered set {1, 2, ..., n}. The
sign 4 is defined by b = by + bge.

Let x, = rank (B) < n + n’, while

(4.7) det Byeye 0 and By y, — WB gu4,= 0,

29



v(#*) = v(¥*) =y and Wis an (n + n' — ) x x-matrix. Let us put v=n +
+n - x> Bx = By.'fo,‘Bz = By.'y, Y = bg/. and § = b.‘,‘. Then (4,5)2 yields

(4.8) ¥y = —B7'B,8 — eB7 'Ryu(e) (x) .

Inserting (4.8) and b = y + & into (4,5); we obtain that (4,5) is equivalent to the
system of equations for x € /% and d € #,,

(4.9) —x(t) + V() 8 + &S(e) (x) (1) = 0,
T(e) (x) = 0,

where

(4,10) V() = Uy y(t1) — Uy 4o(t) B{ 'B,,

S:xedE, &;e [0, €] = S(€) (x) = Ro(€) (x) = Usyo(.) Bf 'Ryu(e) (x) € #€ ,
T:xe A€, c€[0,g] > T(e)(x) = Ry(e) (x) — WRyu(e) (x) € &, .

V(t) is absolutely continuous on J and it is easy to verify that the operators S and T
have the same smoothness properties as @, A, P,, P, etc.

Let &€ > 0, then x € &% is a solution to the boundary value problem (2,) iff (x, 8),
where :

*{(a)
Ky(0) ([ Ta.Gte 9149 )|~

x(a)

f b [d'j :K‘(s) G5} ds] x(1) |’

is a solution to (4,9). (All solutions X, of the limit problem (2,) are given by x,(t) =
= V(f) 8, where 8 is an arbitrary v-vector.) To investigate further the existence of
a solution (and its dependence on €) to (2,) various principles in accordance with the
smoothness of the operators ® and A may be used. Below we state two existence theo-
rems which can serve as models. The first one is obtained by the use of the Newton
method for equations in B-spaces.

d=b>b, and b= J‘

Proposition 1. Let #, and Q; be B-spaces and let €, > 0. Let % < #, and let F
be an operator: (u,€) e % x [0, &,] — F(€) (u) € #,. Let us assume that

(i) the equation F(0) () = O possesses a solution uy € U;

(ii) there exists Qo > O such that F is continuous in (u,€)e ¥, x [0, €] =
= U(uo, Qo; #,) x [0, &] and for all (u, &) € %, x [0, &] possesses a G-derivative
Fi(€) (u) with respect to u which is continuous in (u, €) € %, x [0, g];

(iii) Fy(0) (uo) possesses a bounded inverse [F;(0) (uo)]~".
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Then there exist ¢* > 0 and * > 0 such that for any €€ [0, €*] the equation
F(g) (u) = O possesses one and only one solution u*(g) in U(uy, *; #,). The
mapping € € [0, *] > u*(e) € &, is continuous and u*(€) > u, in B, if € - 0+.

(For the proof see [19], p. 355. Similar theorems are proved also in [8] or [16].)

Remark 4,1. Let us notice that the assertion of Proposition 1 can be equivalently
reformulated as follows.

There exists €* > 0 such that for all € € [0, €*] there exists a unique solution
u* = u*(e) e %, of the equation F(g)(u) = 0 continuous in €€ [0, €*] and such
that u*(0) = u,.

To be able to apply Proposition 1 to the boundary value problem (2,) we have to
add some further assumptions concerning the differentiability of ® and A to those
used until now. It is easy to verify that if # — /% and ® and A are continuous in
(x,€)e % x [0,&] and for all (x,€)e¥ x [0, €,] possess a G-derivative with
respect to x which is continuous in (x, &) € % x [0, €], then the same holds also for
the operators S and T.

Theorem 4,2. Let the boundary value problem (2,) fulfilling the assumptions ()
be given. Let the limit problem (2,) admit a nonzero solution (i.e. det B = 0).
Let the matrix function V and the operators T and T, be defined by (4,7), (4,10) and

(4.11) To: 8 R, —>.Ty(3) = T(0) (V(.)8) e &, .

Suppose

() the limit problem (2P,) possesses a solution x, such that To(8,) = 0 for
8o = (bo)y» where

Xo(a)
|yl

(IT) there exists gy > O such that ® and A are continuous in (x, €) € U, X
x [0, &g] = ¥(xo, 0o; #€) x [0,8,] and for all (x,€)e ¥, x [0, possess
a G-derivative with respect to x continuous in (x, €) € %, x [0, &];

(III) the Jacobian
DT,
det (=2 (5
(Te )
is nonzero.

Then there exists €* > 0 such that for all € € [0, e*] there exists a unique solution
x*(g) to (2,) continuous in €€ [0, €*] as a mapping [0, e*] - #€ and such that
X*(O) = xo.
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Proof. Let us denote & = /¥ x %, and

-

. N —-x +V(.)8 + &S(e) (x) .
Fimied. celoa] (ot T oo

(48 is a B-space with the norm |(x, 8)||s = [|x| ¢ + [|3].)
We shall verify that the operator F fulfils all the assumptions of Proposition 1.
(i) For (x, 3) € # we have
F(0) (x, 5) = (—x + V(.)8> _ (-—x + V(.)8>.
: T(0) (V(.) 3) To(3)

Let x, be a solution to (2,) such that To(8,) = 0 for 8, = (bo)y» where

xo(a)

=\ [To [0 600 8]0 |

Then x, = V(.) 8, and hence F(0) (xo, 8o) = 0.

(i) Since the operators S and T have the same smoothness properties as ® and A,
there exist &, > 0 and ¢, > 0 such that F fulfils the assumption (ii) of Proposition 1
on %; x [0,&,] = %((x0, 8), ©1; %) x [0, €,] while for (x,8,¢)e#, x [0,¢,]
and (X, 8) € &,

[Fiese) (x 8)] (%, 8) =

( —% + V()8 + g[Si(e) (x)] x )
[T:(e) (V(.)  + &S(e) (x))](V(.) 8) + e[ Tu(e) (V(.) 8 + &S(e) (x))] [Si(e) (x)]

In particular

B U -X+V()d _[-X+V()3
2459 = Flnl® e 1= (110 1) [2% e]s)

(ili) Given an arbitrary coup]e (x,8) e 2,

xn=()

- DT, -1 -
=== 8 and Xx=V(.)6 + x.
B ()

iff
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Thus the operator J, possesses an inverse
DT, =1
x+V()|— (8 )
SIESS]

e

Applying Proposition 1 we complete the proof.

ol (x,8)e® > €,

the boundedness of J; ' being obvious.

The system (4,9) can be simplified by means of the following

Proposition 2. There exists €, > 0 such that for every ¢ e [0,€,] and 3eR,
there exists a unique solution x = E(g) (8) e A% of the equation

(4.9), —x+V(.)8 +&S(e)(x) =0,

the operator Z: R, x [0,&,] > ¥ being continuous in (8, €) and locally lip-
schitzian in & near € = 0.

Proof. The existence and uniqueness of the desired solution x = Z(g) (8) for all
de R, and e €[0, €,] with some &, > 0 and the continuity of E in (3, €) e &, X
x [0, &,] are evident. Given an arbitrary 8, € ,, let us denote

xo = V(.) 8o = E(0) (3,) -
Let B = B(8p) > 0, €3 = &(8y) > 0 (g3 < &,) and @ = @(8y) > 0 be such that
I5(e) (x1) = S(€) (x1) | e < B2 — %1 | are

for all x;, x, € %(x,, @; #%) and € € [0, €5]. In virtue of the continuity of Z in (3, €)
there exist o = o(8p) > 0 and &, = £4(8,) > 0 (¢4 < €5) such that Z(g)(8) e
€ U(xo, @; #€)for all 5 € U(S,, o; R,) and € € [0, €,]. Hence for 8,, 5, € %(3y, o; R,)
and € € [0, g,]

IZ(e) (32) — E(e) (81)]ure = V]| 182 — 84]) + B[ Z(e) (32) — E(€) (8:)] e -

Wherefrom, putting &, = €,(8,) = min (g4, (2B)~") our assertion follows.

Remark 4,2. It could be shown that if 8, € #,, x, = V(.) 8, and S possesses for
all (x,€)e¥(xo, Qy; #€) x [0,8,] (g1 >0) a G-derivative with respect to x
continuous in (x, €) € %(x,, y; F€) x [0, &,], then there exist €, > 0 and @, > 0
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such that for all (3, €) € %(8, 025 #,) X [0, €,] E possesses a G-derivative with
respect to & continuous.in (3, €) € %(8y, 02; #,) x [0, &;]. (For 5 € &,
[=3() (8)]8 = (i — e[Si(e) (B() (BN ~* (V() 9) »
where i denotes the identity operator in &/%.)
Inserting x = E(g) (3) into (4,9), we get

(4.12) 0(e) (8) = T(e) (E(e) (3)) = 0.
The second existence theorem for the critical case is based on the notion of the
Brouwer topological degree and does not require any assumptions of the differen-

tiability of @ and A. It follows from the following proposition. (For the definition
of the Brouwer topological degree see J. CRONIN [4].)

Proposition 3. Let 4 be a bounded open set in &, and let f be a continuous mapping
of the closure  of 9 in R, into R,. Let f(8) + 0 on the frontier 8% of % in R, and
let the degree d(f, 9, 0) of f with respect to 0 € &, and 9 be nonzero. Then the equa-
tion f(8) = O has at least one solution in ¥ and there exists 1 > 0 such that for
every continuous mapping g : 9 — R, with sup | £(8) — g(3)]| < m there exists in ¢

ded

at least one solution of the equation g(3) = 0.
Proof. The mapping
h:8ed, te[0,1] - h(3,1) = f(8) + (1 — 1) (g(3) — f(3))

is a continuous mapping of % x [0, 1] into %, with h(8, 0) = g(8) and h(3, 1) =
= (3). I
@] 22050 and [5E) - g@) <n on 9.

then for all § € 9% and t € [0, 1]
[h@, O]l 2 17G)] - 17() - ¢(®)] > n > 0.

Proposition 2 is now an immediate consequence of Existence Theorem ([4]. p. 32)
and of Theorem of Invariance under Homotopy ([4], p. 31).

Theorem 4,3. Let the boundary value problem (2,) fulfilling the assumptions (&)
be given. Let the limit problem (2,) admit a nonzero solution (i.e. det B = 0).
Let the matrix function V and 'the operators T and T, be given by (4,7), (4,10) and
(4;11). Suppose ‘

(I) the limit problem (2,) possesses a solution x, such that To(3,) = 0 for
8o = (bo)y, where

xo(a)

[[o o]

I
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(IT) there exists a bounded open subset 4 of R, such that To(3) * 0 for & € 0%
and d(T,, %, 0) + 0.

Then there exists €* > 0 such that for every € € [0, €*] there exists at least one
solution to (2,).

Proof. It is easy to verify that the operator Tj : R, x [0, g] — £, is locally
lipschitzian in 8 € £, near € = 0 and continuous in & € [0, n; | with some n; > 0
small enough for any & € #, fixed. By Heine-Borel Covering Theorem we may
assume that there exists n, > 0 such that © is uniformly continuous in (3, &) e Z x
x [0, m,]. Applying Proposition 3 to the equation (4,12) we complete the proof.

Remark 4,3. The methods of this paragraph can be also applied if Le 47, , and
A : AC — R, where generally m £ n. Of course, the situation is no more prede-
termined so largely by the fact whether the limit problem (97’0) admits a nonzero
solution or not. Let the (m + n’) x (n + n’)-matrix B be defined by (4,4), (3,9), (3,10)
and (3,12). Let the n x (n + n’)-matrix function U and the operators R, : 4% x
x [0, 80] = 4% and R : 4% x [0, €,] = &,+, be given by (4,4) and (4,6). Then
again an n-vector function x € &% is a solution to the boundary value problem (2,)
iff a couple (x, b), where

_ x(a)

) f " [d, f :Kz(s) 6(s, 1) ds] (1)

is a solution to the system of operator equations ((4,5))

bl

—x + U(.) b + €Ry(e) (x) =0,
Bb + eR(g)(x) =0.

Let m < n and rank (B) =m + n'. Let us denote # = {1,2,...,m + n'} and let
¥~ < A be such that v(¥") = n — m and det B 4 4. + 0. Putting y = by, 5 = by,
B, = B4 4+ and B, = B4y, (4,5) becomes

(4,13) -x+V(.)8 +£S(e)(x) =0,

where the n x (n — m)-matrix function V and the operator S are given by (4,10).
Given an arbitrary 8, € #,_,, the function x, = ¥(.) 8, is a solution to the limit
problem (#,) and by Proposition 2 there exists ¢* > 0 such that for all €€ [0, e*]
there exists a unique solution x*(g) to (#,) continuous in € € [0, e*] as a mapping
[0, e¥] - % and such that x*(0) = x,. The given boundary value problem ()
can be treated similarly as the noncritical case for m = n, although the limit problem
(2,) possesses a nonzero solution. On the other hand, if¢ > 0, m > n and rank (B) =
= n + n’, then (4,5) is equivalent to the system

(4,14) —x +eS(e)(x) =0, T(E)(x)=0
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with S and T defined analogously as in (4,10). Now the function x is uniquely deter-
mined by (4,14), and ta be a solution to the given problem (£,) with € > 0 it has to
satisfy (4,14),. Hence the boundary value problem (£,) has generally no solution,
though the limit problem (£,) has only the trivial solution (cf. Corollary 1 of Theorem
3,1). In the other cases we meet an analogous situation.

5. LINEAR BOUNDARY VALUE PROBLEM — FUNCTIONAL
ANALYSIS APPROACH

Let us turn back to the linear boundary value problem (£) given by
’ b
(5.1) % — A(l)x — I [4,6(t, 8)] x(s) = /(1).
b
(52) [Toense) =1,

where Ae &, ,, fe %', Ge $*[#YV], Le BY,,, and | € R,,. Without any loss of
generality we may assume that for all te J G(¢, .) and L are continuous from the right
on the open interval (a, b).

In [20] D. Wexler derived the true adjoint (in the sense of functional analysis) to
the boundary value problem

x—A)x=f(), Lx=1,

where A € ..‘6’:,,,, fe 2, Lis a continuous linear mapping of &% into some B-space A
and [ € A. In this paragraph we apply his ideas to the boundary value problem (2).
The special form of the operator L and the different choice of a dual space to the space
% of continuous functions on J (measures are replaced by functions of bounded
variation) enables us to prove that the problem (2*) derived in § 3 ((3,16), (3,17)) is
equivalent to the true adjoint of (2).

First, we have to introduce some new notations.

£ denotes the B-space of all row n-vector functions measurable and essentially
bounded on J. It is well-known that #* is a dual B-space to the B-space #! = .5,”,}'1
of column n-vector functions L-integrable on J. The value of a functional y'e £*®
on x € #! is given by

‘ b
(%9 De = J‘ y'(s) x(s) ds

and the norm of y' is ||y'[|, = sup ess | y'(¢)|. Functi;)ns from £ which coincide
teJ

a.e. on J are identified with one another.
#v"" is the B<space of all row n-vector functions of bounded variation on J and
continuous from the right on (a, b) (27" * < #7°,,). ¢* denotes the dual B-space
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to the space ¢ of column n-vector functions continuous on J, i.e. ¥* is formed by
all functions from #¥"* which vanish at a. Given an arbitrary functional y‘ € ¥*,
its value on x € ¥ is given by

(5 7'y = j "Tdy' (9] *(0)

and ||y*[l¢» = var) y'. The zero element of €* is the function vanishing everywhere
on J.

A €* denotes the dual B-space to the B-space &/% of column n-vector functions
absolutely continuous on J. The value of a functional y'e o/%* on xe€ A¥ is
denoted by <x, y*)4¢. Let us notice that we can consider ([20] 2,1) ¢* = F/%*
and {x, ¥'D ¢ = (%, ¥ D¢ for xe ¥ and y' € €*. Moreover, since the topology of #/¥
is stronger than that induced by (||x|¢ = sup |x()|) and /% is dense in €, the
zero elements of &/%* and * coincide. !

The operators

D:xed€—>xe', A:xed€ — A(t) x(f) e £,

b
G:xe.z"ﬁ—»J‘[dsG(t,s)]x(s)e.S,”l, RB,:xe A€ » Dx — Ax — Gxe &!
and

B, xeAC > 'r[dL(s)] x(s) € R,

are linear and continuous. Hence the operator

Bix

B,x

(5.3 Q:xed‘f—»( )e."t"xﬂm

is linear and continuous, too. Its adjoint #* is a linear continuous operator £* x
X R — A€* defined on (y',A") e L x &, by
(B%, Ve + L'(Byx) = {x, B*(y", A" ))uye forall xeA€.

The boundary value problem (P) can be now written in the form

(5.4) B = (JI’ ) .

Let us derive an explicit form for #*. For x € #/% and (y',A')e £ x A, we
have

<x; -@*(y" )"‘)>d‘£ =(B1x,y Ve + X‘(.@?zx) = (Dx, yDg — {AX, yDe —

— {Gx, ¥ D + L\(B,x) = {x, D*y" — A*y' — G*y' + BN
and
B*(y',\') = D*y' — A*y' — G*y' + B3\,

37



where D*, A*, G* and @3 are adjoint operators to D, A, G and 4&,, respectively.
Thus the adjoint equation to (5,4) is

(5,5 D*y' — A*y' — G*y' + B\ =0

(where 0 means the zero element of /%*, of course).
Given an arbitrary x € /% and y' € £*, it holds by Lemma 2,7

J' :y‘(t) ( J.:[d,G(t, 9] x(s)) dt = f ' [d, f :y‘(s) (G(s, 1) — G(s, a)) ds] ().

As a consequence, since [5 y'(s) (G(s, ) — G(s, a)) ds € €*, we have

b
<mcanu«=«hwvz=<mjyﬁx«a0—6@a»m>
a 4
and

(5.6) Gty e e o f "36) (G(s, 1) — G(s, a)) ds e 6* .

By a similar argument the operators A* and 23 are defined by

(5,7 A*: y' e L° J“y‘(s) A(s) ds e €*
and ’

(5.8) B3 : A e gy > M(L(t) — L(a)) e €*.
Furthermore,

(5,9 D*:y‘e%* > —y'(t) + R(y") (1) e €*,
where /

(5,10) y'(a) for t=a,

R(y")(t) =10 for a<t<b,
y'(b) for t=5b.

The operator Dx — Ax maps &% onto #'. Hence y'e€ #> being an arbitrary
solution to D*y' — A*y' =0, y'(t) = 0 a.e. on J. Moreover, given an arbitrary
g' € €*, the equation

(5.11) D*y' — A*y' =g

has a solution in Z® iff

(5.12) - fwwmhm
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where X denotes again the fundamental matrix solution of Dx — Ax = 0 (cf. (3,3)).
Suppose g* € €* and (5,11) has a solution in £ . Then this solution is unique in £.
Let us put for te J

20 =~([ a'[dg%s)] X() X1,

Since z' € ¢* and R(z") (f) = 0 by (5,10) and (5,12), we have by (5,7), (5,9), Lemma
1,1 and (3,3)

D*z' — A*z}

() + j ([[1e0 o x(@) x40 49 a5 =
= =) + [T (x0) | X71(0) 4(0) o) = ).

It follows that z* is the unique solution of (5,11) in £*. Applying this to (5,5) and
taking into account (5,6)—(5,8), we obtain that to any solution (y',A') € £* x %,
of (5,5) there exists a solution (1", A") of (5,5) such that n* e #7°*, " is continuous
at a from the right and at b from the left and y'(f) = 1'(f) a.e.on J (y* = ' in £*).
Consequently, to find all solutions of (5,5) in £® x %, it is sufficient to consider
instead of Z8* its restriction 83 on ¥~ x 2, where ¥~ is formed by all functions
from #¥"* which are continuous at a from the right and at b from the left. By

(5:6)—(5.9)
B, 0) = —y'() + R(Y) (1) - f 'Y(s) A(s) ds + ML) — La)) —

- fby‘(s) (G(s, 1) — G(s, a)) ds e &*.

In other words, the equation (5,5) for (y', A') € £ x &, is equivalent to the
equation

619 =0+ REYO ~ [0 46 s + 10 - Ua) -

- [by‘(s) (G(s,t) — G(s,a))ds =0 on J

for (y',A") € ¥ x %m. In particular, (5,13) yields

y'(@) - y'(a)=0 for t=a,
619 v =~ | Y(5) As) ds + A (L) — Lia) - j "16) (665, ) = 6(s, @) ds
for te(a,b),

39



and
(5,15 0= — ry*(s) A(s) ds + V' (L(b) — L(a)) - .ry‘(s) (G(s, b) — G(s, a)) ds

for t=5b.
Furthermore, from (5,14) we have

(516 ¥(0) = yla+) = 1 (ta+) - 46) - [ (0 (6o, a+) = (o, ) s

and consequently (5,14) becomes

G1) YO =@~ [ YO A + 0 - at) -
- J :y‘(s) (G(s, i) — Gls, a+))ds for te(a,b).

Making use of (5,15), (5,14) can be modified as follows

(5.19) v = [y 46 a5 = 200) - 1) +

+ be‘(s) (G(s, b) — G(s,1))ds for te(a,b).
Thus ’
(519) y()= () = -2 - Lp-) + | "3(5) (665, ) = G(s, b)) ds
and

62) YO =0+ [ O AE) s+ 1) - Le-) -
_ J"y\(s)(c(s, ) — G(s, b-))ds for te(a,b).

Let us define
G(t,a+) for teJ and s = a, L(a+) for s = a,
Go(t,s) =4{G(t,s) forteJand a<s<b, Lys)={Ls) fora<s<b,
G(t,b—) for teJ and s = b, L(b-) for s =b,

C(t) = G(t,a+) — G(t, a) and D(t) = G(t, b) — G(t, b—) for te J and

M = L(a+) — L(a), N =L(b) — L(b-).
Then from (5,16), (5,17), (5,19) and (5,20) we can conclude that the equation (5,13)

(and hence also (5,5)) is equivalent to the system of equations for (y', v") € £* x
X Ay (v = —2")
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(521) ¥ (0) = »(@) - j () A(5) ds — v'(Lo(t) — Lo(a)) —
- f "1'(5) (Gols, 1) — Gls, @) ds on 7,

(5.22) y'(a)= —y'M - Iby‘(s) C(s)ds, y'(b)=7vy'N + ry‘(s) D(s)ds .

v a

In the introduced notation, the original boundary value problem (%) assumes the
form

% = A(f) x + C(t) x(a) + D(t) x(b) + J’b[d,Go(t, 5)] x(s) + f(1),
M x(a) + N x(b) + J "TdLo(5)] x(s) = !

and (5,21), (5,22) is exactly its adjoint (2*) derived in § 3 ((3,16), (3,17)).
As a consequence we have that the adjoint (2*) of (2) from §3 and the true
adjoint (5,5) of (?) are equivalent.

From the fundamental ‘alternative” theorem concerning linear equations in B-
spaces ([5] VI, § 6) and from Theorem 3,1 it follows that the operator 4 of the
boundary value problem (2) defined by (5,3) has a closed range in ' x &,

Remark. The closedness of the range #(/%) of the operator 2 can be also shown
directly in a similar way as D. Wexler did in [20] § 3 for the operator

xe.szl?ﬁ—»(x—A(t)x)eg" X R, ,
Lx

where Lis a continuous linear mapping of &% into some B-space A. In fact, let the
matrix B and the operator

‘P:(lf)e.?" X B> V() =WeERpsn

be defined by (4,4), (3,9), (3,10) and (3,12). Let us put
®:beR,,, > Bbe Ry -

Given fe %! and Il € &,,, the corresponding boundary value problem (9’) possesses
a solution (i.e. (f', I')' € B(#¥)) iff ¥(/, I) € O(&,,). Hence

B(AC) = ¥_,(O(Ry1r)) -

Since ¥ and @ are continuous linear operators and dim ©(%,.,.) < oo, the set
Y _,(O(#,,)) is certainly closed.
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