

Werk

Label: Article **Jahr:** 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

GENERAL BOUNDARY VALUE PROBLEM FOR AN INTEGRODIFFERENTIAL SYSTEM AND ITS ADJOINT

MILAN TVRDÝ, OTTO VEJVODA, Praha (Received January 19, 1971 — in revised form February 10, 1972)*)

(Continuation)**)

4. WEAKLY NONLINEAR BOUNDARY VALUE PROBLEM

Notation. Given a B-space \mathscr{B} with the norm $\|\cdot\|_{\mathscr{B}}$, $u_0 \in \mathscr{B}$ and $\varrho > 0$, the set $\{u \in \mathscr{B} : \|u - u_0\|_{\mathscr{B}} \leq \varrho\}$ is denoted by $\mathscr{U}(u_0, \varrho; \mathscr{B})$.

Definition 4.1. Let \mathscr{B}_1 , \mathscr{B}_2 be B-spaces and let $\varepsilon_0 > 0$. An operator $F: u \in \mathscr{B}_1$, $\varepsilon \in [0, \varepsilon_0] \to F(\varepsilon)(u) \in \mathscr{B}_2$ is said to be locally lipschitzian in u near $\varepsilon = 0$ if, given an arbitrary $u_0 \in \mathscr{B}_1$, there exist $\alpha(u_0) > 0$, $\varrho(u_0) > 0$ and $\varepsilon(u_0) > 0$ such that

$$||F(\varepsilon)(u_2) - F(\varepsilon)(u_1)||_{\mathscr{B}_2} \le \alpha(u_0) ||u_2 - u_1||_{\mathscr{B}_1}$$

for all $u_1, u_2 \in \mathcal{U}(u_0, \varrho(u_0); \mathcal{B}_1)$ and $\varepsilon \in [0, \varepsilon(u_0)]$.

Hereafter we suppose

$$\left(\mathscr{A}\right) \qquad \qquad A \in \mathscr{L}^{1}_{n,n} \,, \quad G \in \mathscr{L}^{2}\big[\mathscr{BV}\big] \,, \quad L \in \mathscr{BV}_{n,n} \quad \big(m = n\big) \,.$$

The mappings

$$\begin{split} \Phi: x \in \mathscr{AC} \,, &\quad \varepsilon \in \left[0, \, \varepsilon_0\right] \to \Phi(\varepsilon) \, (x) \in \mathscr{L}^1 \,, \\ \Lambda: x \in \mathscr{AC} \,, &\quad \varepsilon \in \left[0, \, \varepsilon_0\right] \to \Lambda(\varepsilon) \, (x) \in \mathscr{R}_n \end{split}$$

are locally lipschitzian in x near $\varepsilon = 0$ and continuous in $\varepsilon \in [0, \varepsilon_0]$ for any $x \in \mathscr{AC}$ fixed, $\varepsilon_0 > 0$.

^{. *)} The last paragraph (§ 5) was added.

^{**)} The first part was published in this Čas. pest. mat. 97 (1972), 399-419.

Let us consider the weakly nonlinear boundary value problem (\mathscr{P}_{ϵ})

(4,1)
$$\dot{x} = A(t) x + \int_{a}^{b} \left[d_{s} G(t, s) \right] x(s) + \varepsilon \Phi(\varepsilon) (x) (t),$$

(4,2)
$$\int_a^b [dL(s)] x(s) + \varepsilon \Lambda(\varepsilon) (x) = 0,$$

where $\varepsilon \ge 0$ is a small parameter.

We proceed formally as in § 3 and write the problem $(\mathcal{P}_{\varepsilon})$ in the equivalent form as the system of equations for $x \in \mathcal{AC}$, $h \in \mathcal{L}^2$ and $c \in \mathcal{R}_n$

(4,3)
$$-x(t) + X(t) c + \int_{a}^{t} X(t) X^{-1}(s) h(s) ds + \varepsilon P_{0}(\varepsilon) (x) (t) = 0,$$

$$-h(t) + H_{1}(t) c + \int_{a}^{b} K(t, s) h(s) ds + \varepsilon P_{1}(\varepsilon) (x) (t) = 0,$$

$$Cc + \int_{a}^{b} H_{2}(s) h(s) ds + \varepsilon P_{2}(\varepsilon) (x) = 0,$$

where X(t) has the same meaning as before ((3,3)) and

$$(4,4) H_{1}(t) = \int_{a}^{b} [d_{s}G(t,s)] X(s), H_{2}(t) = \left(\int_{t}^{b} [dL(s)] X(s)\right) X^{-1}(t),$$

$$K(t,s) = \left(\int_{s}^{b} [d_{\sigma}G(t,\sigma)] X(\sigma)\right) X^{-1}(s), C = \int_{a}^{b} [dL(s)] X(s),$$

$$P_{0}(\varepsilon) (x) (t) = X(t) \int_{a}^{t} X^{-1}(s) \Phi(\varepsilon) (x) (s) ds,$$

$$P_{1}(\varepsilon) (x) (t) = \int_{a}^{b} [d_{s}G(t,s)] \left(X(s) \int_{a}^{s} X^{-1}(\sigma) \Phi(\varepsilon) (x) (\sigma) d\sigma\right) =$$

$$= \int_{a}^{b} \left(\int_{s}^{b} [d_{\sigma}G(t,\sigma)] X(\sigma)\right) X^{-1}(s) \Phi(\varepsilon) (x) (s) ds = \int_{a}^{b} K(t,s) \Phi(\varepsilon) (x) (s) ds,$$

$$P_{2}(\varepsilon) (x) = \Lambda(\varepsilon) (x) + \int_{a}^{b} [dL(s)] \left(X(s) \int_{a}^{s} X^{-1}(\sigma) \Phi(\varepsilon) (x) (\sigma) d\sigma\right) =$$

$$= \Lambda(\varepsilon) (x) + \int_{a}^{b} \left(\int_{s}^{b} [dL(\sigma)] X(\sigma)\right) X^{-1}(s) \Phi(\varepsilon) (x) (s) ds.$$

By assumptions of this paragraph $K \in \mathcal{L}_2$, H_1 and $H_2 \in \mathcal{L}_{n,n}^2$ and P_0 , P_1 and P_2 are mappings of $\mathcal{AC} \times [0, \varepsilon_0]$ into \mathcal{AC} , \mathcal{L}^2 and \mathcal{R}_n , respectively, locally lipschitzian in x near $\varepsilon = 0$ and continuous in $\varepsilon \in [0, \varepsilon_0]$ for any $x \in \mathcal{AC}$ fixed. For example, in the case of P_1 we have for $x_1, x_2 \in \mathcal{AC}$, $t \in J$ and $\varepsilon_1, \varepsilon_2 \in [0, \varepsilon_0]$

$$||P_1(\varepsilon_2)(x_2)(t) - P_1(\varepsilon_1)(x_1)(t)|| \le \beta \operatorname{var}_a^b G(t,\cdot) ||\Phi(\varepsilon_2)(x_2) - \Phi(\varepsilon_1)(x_1)||_1$$

where $\beta = \sup_{t,s\in J} ||X(t)X^{-1}(s)||$. Hence

$$||P_1(\varepsilon_2)(x_2) - P_1(\varepsilon_1)(x_1)||_2 \le \alpha ||\Phi(\varepsilon_2)(x_2) - \Phi(\varepsilon_1)(x_1)||_1$$

where

$$\alpha = \beta \|\operatorname{var}_a^b G(t, \cdot)\|_2.$$

Let $K_0 \in \mathcal{L}_2$, $K_1 \in \mathcal{L}_{n,n'}^2$ and $K_2 \in \mathcal{L}_{n',n}^2$ be again such that $K(t,s) = K_0(t,s) + K_1(t) K_2(s)$, $|||K_0||| < 1$. Let Γ be the resolvent kernel of K_0 and let \widetilde{H}_1 and \widetilde{K}_1 be again defined by (3,10). $(\Gamma \in \mathcal{L}_2, \ \widetilde{H}_1 \in \mathcal{L}_{n,n}^2)$ and $\widetilde{K}_1 \in \mathcal{L}_{n,n'}^2$, of course.) Then the system (4,3) becomes

(4,5)
$$-x(t) + U(t) b + \varepsilon R_0(\varepsilon)(x)(t) = 0,$$
$$Bb + \varepsilon R(\varepsilon)(x) = 0,$$

where B is given by (4,4), (3,9), (3,10) and (3,12),

$$(4,6) U(t) = \left(X(t)\left[I + \int_{a}^{t} X^{-1}(s) \tilde{H}_{1}(s) ds\right], \quad X(t)\int_{a}^{t} X^{-1}(s) \tilde{K}_{1}(s) ds\right),$$

$$R_{0}(\varepsilon)(x)(t) = P_{0}(\varepsilon)(x)(t) + X(t)\int_{a}^{t} X^{-1}(s) P_{1}(\varepsilon)(x)(s) ds,$$

$$R(\varepsilon)(x) = \begin{pmatrix} \int_{a}^{b} \tilde{K}_{2}(s) P_{1}(\varepsilon)(x)(s) ds \\ P_{2}(\varepsilon)(x) + \int_{a}^{b} \tilde{H}_{2}(s) P_{1}(\varepsilon)(x)(s) ds \end{pmatrix},$$

$$\tilde{H}_{2}(t) = H_{2}(t) + \int_{a}^{b} H_{2}(s) \Gamma(s, t) ds, \quad \tilde{K}_{2}(t) = K_{2}(t) + \int_{a}^{b} K_{2}(s) \Gamma(s, t) ds,$$

$$h(t) = \tilde{H}_{1}(t) c + \tilde{K}_{1}(t) d + \varepsilon \left[P_{1}(\varepsilon)(x)(t) + \int_{a}^{b} \Gamma(t, s) P_{1}(\varepsilon)(x)(s) ds\right],$$

$$d = \int_{a}^{b} K_{2}(s) h(s) ds, \quad b = (c', d')'.$$

Clearly, U(t) is absolutely continuous on J, $\widetilde{H}_2 \in \mathcal{L}^2_{n,n}$, $\widetilde{K}_2 \in \mathcal{L}^2_{n',n}$, R_0 and R are mappings of $\mathscr{AC} \times [0, \varepsilon_0]$ into \mathscr{AC} and $\mathscr{R}_{n+n'}$, respectively, locally lipschitzian in x near $\varepsilon = 0$ and continuous in $\varepsilon \in [0, \varepsilon_0]$ for any $x \in \mathscr{AC}$ fixed.

The further investigation of our problem rather depends on whether det $B \neq 0$ or det B = 0. In the former simple (so called noncritical) case the following theorem holds.

Theorem 4,1. Let the boundary value problem (\mathcal{P}_{ϵ}) be given and let the assumptions (\mathcal{A}) be fulfilled. Let the limit problem (\mathcal{P}_0) have only the trivial solution. Then there exists $\epsilon^* > 0$ such that for any $\epsilon \in [0, \epsilon^*]$ there exists a unique solution x_{ϵ}^* of (\mathcal{P}_{ϵ}) , while $\|x_{\epsilon}^*\|_{\mathcal{A}^{\varepsilon}} \to 0$ for $\epsilon \to 0+$.

Proof. Let (\mathcal{P}_0) have only the trivial solution. Then by Corollary 1 of Theorem 3,1 det $B \neq 0$ and (4,5) becomes

$$x(t) = \varepsilon \left[R_0(\varepsilon)(x)(t) - U(t) B^{-1} R(\varepsilon)(x) \right] = \varepsilon T(\varepsilon)(x)(t).$$

It follows immediately from the above argument that the operator $T: \mathscr{AC} \times [0, \varepsilon_0] \to \mathscr{AC}$ is locally lipschitzian in x near $\varepsilon = 0$ and continuous in $\varepsilon \in [0, \varepsilon_0]$ for any $x \in \mathscr{AC}$ fixed. Hence the fixed point theorem for contractive operators ([8]) can be applied.

Remark 4,1. The given boundary value problem $(\mathscr{P}_{\varepsilon})$ is certainly noncritical e.g. if in (4,3)

- a) det $C \neq 0$ and 1 is not an eigenvalue of $K(t, s) H_1(t) C^{-1} H_2(s)$,
- b) 1 is not an eigenvalue of K and

$$\det\left(C + \int_a^b H_2(s) \left[H_1(s) + \int_a^b Q(s,\sigma) H_1(\sigma) d\sigma\right] ds\right) \neq 0,$$

where Q is the resolvent kernel of K.

In the critical case (det B = 0) some further notations are needed.

Notation. \mathcal{N}_0 denotes the naturally ordered set $\{1, 2, ..., n + n'\}$. If \mathcal{S} is a naturally ordered subset of \mathcal{N}_0 , then \mathcal{S}^* denotes the naturally ordered complement of \mathcal{S} with respect to \mathcal{N}_0 . The number of elements of a set $\mathcal{S} \subset \mathcal{N}_0$ is denoted by $\gamma(\mathcal{S})$. Let $C = (c_{i,j})_{i,j\in\mathcal{N}_0}$ be an $(n + n') \times (n + n')$ -matrix and let $\mathcal{S} \subset \mathcal{N}_0$, $\mathcal{V} \subset \mathcal{N}_0$, then $C_{\mathcal{S},\mathcal{V}}$ denotes the matrix $(c_{i,j})_{i\in\mathcal{S},j\in\mathcal{V}}$. Similarly if b is an (n + n')-vector $(b = (b_j)_{j\in\mathcal{N}_0})$ and $\mathcal{S} \subset \mathcal{N}_0$, then $b_{\mathcal{S}} = (b_j)_{j\in\mathcal{S}}$. (Analogously for matrix or vector functions and operators.) \mathcal{N} denotes the naturally ordered set $\{1, 2, ..., n\}$. The sign + is defined by $b = b_{\mathcal{S}} + b_{\mathcal{S}^{\bullet}}$.

Let
$$\chi = \operatorname{rank}(B) < n + n'$$
, while

(4,7)
$$\det B_{\mathscr{S}^{\bullet},\mathscr{V}^{\bullet}} \neq 0 \quad \text{and} \quad B_{\mathscr{S},\mathscr{K}_{0}} - WB_{\mathscr{S}^{\bullet},\mathscr{K}_{0}} = 0,$$

 $v(\mathscr{S}^*) = v(\mathscr{V}^*) = \chi$ and W is an $(n + n' - \chi) \times \chi$ -matrix. Let us put $v = n + n' - \chi$, $B_1 = B_{\mathscr{S}^*,\mathscr{V}^*}$, $B_2 = B_{\mathscr{S}^*,\mathscr{V}}$, $\gamma = b_{\mathscr{V}^*}$ and $\delta = b_{\mathscr{V}}$. Then $(4,5)_2$ yields

$$\gamma = -B_1^{-1}B_2\delta - \varepsilon B_1^{-1}R_{\mathscr{S}^{\bullet}}(\varepsilon)(x).$$

Inserting (4,8) and $b = \gamma + \delta$ into (4,5)₁ we obtain that (4,5) is equivalent to the system of equations for $x \in \mathscr{AC}$ and $\delta \in \mathscr{R}_{\nu}$,

(4,9)
$$-x(t) + V(t) \delta + \varepsilon S(\varepsilon)(x)(t) = 0,$$
$$T(\varepsilon)(x) = 0,$$

where

$$(4,10) V(t) = U_{\mathcal{N},\mathcal{Y}}(t) - U_{\mathcal{N},\mathcal{Y}}(t) B_1^{-1} B_2,$$

$$S: x \in \mathscr{AC}, \quad \varepsilon \in [0, \varepsilon_0] \to S(\varepsilon)(x) = R_0(\varepsilon)(x) - U_{\mathscr{N}, \mathscr{V}^{\bullet}}(.) B_1^{-1} R_{\mathscr{S}^{\bullet}}(\varepsilon)(x) \in \mathscr{AC},$$

$$T: x \in \mathscr{AC}, \quad \varepsilon \in [0, \varepsilon_0] \to T(\varepsilon)(x) = R_{\mathscr{C}}(\varepsilon)(x) - WR_{\mathscr{C}^{\bullet}}(\varepsilon)(x) \in \mathscr{R}_{\mathscr{C}}.$$

V(t) is absolutely continuous on J and it is easy to verify that the operators S and T have the same smoothness properties as Φ , Λ , P_0 , P_1 etc.

Let $\varepsilon > 0$, then $x \in \mathscr{AC}$ is a solution to the boundary value problem $(\mathscr{P}_{\varepsilon})$ iff (x, δ) , where

$$\delta = b_{y} \quad \text{and} \quad b = \begin{pmatrix} x(a) \\ \int_{a}^{b} K_{2}(t) \left(\int_{a}^{b} [d_{s}G(t, s)] x(s) \right) dt \end{pmatrix} = \begin{pmatrix} x(a) \\ \int_{a}^{b} [d_{t} \int_{a}^{b} K_{2}(s) G(s, t) ds] x(t) \end{pmatrix},$$

is a solution to (4,9). (All solutions x_0 of the limit problem (\mathcal{P}_0) are given by $x_0(t) = V(t) \delta$, where δ is an arbitrary v-vector.) To investigate further the existence of a solution (and its dependence on ε) to ($\mathcal{P}_{\varepsilon}$) various principles in accordance with the smoothness of the operators Φ and Λ may be used. Below we state two existence theorems which can serve as models. The first one is obtained by the use of the Newton method for equations in B-spaces.

Proposition 1. Let \mathscr{B}_1 and \mathscr{B}_2 be B-spaces and let $\varepsilon_0 > 0$. Let $\mathscr{U} \subset \mathscr{B}_1$ and let F be an operator: $(u, \varepsilon) \in \mathscr{U} \times [0, \varepsilon_0] \to F(\varepsilon)(u) \in \mathscr{B}_2$. Let us assume that

- (i) the equation F(0)(u) = 0 possesses a solution $u_0 \in \mathcal{U}$;
- (ii) there exists $Q_0 > 0$ such that F is continuous in $(u, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0] = \mathcal{U}(u_0, Q_0; \mathcal{B}_1) \times [0, \varepsilon_0]$ and for all $(u, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0]$ possesses a G-derivative $F'_{\mathbf{u}}(\varepsilon)$ (u) with respect to u which is continuous in $(u, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0]$;
 - (iii) $F'_{u}(0)(u_0)$ possesses a bounded inverse $[F'_{u}(0)(u_0)]^{-1}$.

Then there exist $\varepsilon^* > 0$ and $\varrho^* > 0$ such that for any $\varepsilon \in [0, \varepsilon^*]$ the equation $F(\varepsilon)(u) = 0$ possesses one and only one solution $u^*(\varepsilon)$ in $\mathcal{U}(u_0, \varrho^*; \mathcal{B}_1)$. The mapping $\varepsilon \in [0, \varepsilon^*] \to u^*(\varepsilon) \in \mathcal{B}_1$ is continuous and $u^*(\varepsilon) \to u_0$ in \mathcal{B}_1 if $\varepsilon \to 0+$.

(For the proof see [19], p. 355. Similar theorems are proved also in [8] or [16].)

Remark 4,1. Let us notice that the assertion of Proposition 1 can be equivalently reformulated as follows.

There exists $\varepsilon^* > 0$ such that for all $\varepsilon \in [0, \varepsilon^*]$ there exists a unique solution $u^* = u^*(\varepsilon) \in \mathscr{U}_0$ of the equation $F(\varepsilon)(u) = 0$ continuous in $\varepsilon \in [0, \varepsilon^*]$ and such that $u^*(0) = u_0$.

To be able to apply Proposition 1 to the boundary value problem (\mathscr{P}_{ϵ}) we have to add some further assumptions concerning the differentiability of Φ and Λ to those used until now. It is easy to verify that if $\mathscr{U} \subset \mathscr{A}\mathscr{C}$ and Φ and Λ are continuous in $(x, \varepsilon) \in \mathscr{U} \times [0, \varepsilon_0]$ and for all $(x, \varepsilon) \in \mathscr{U} \times [0, \varepsilon_0]$ possess a G-derivative with respect to x which is continuous in $(x, \varepsilon) \in \mathscr{U} \times [0, \varepsilon_0]$, then the same holds also for the operators S and T.

Theorem 4,2. Let the boundary value problem (\mathcal{P}_{ϵ}) fulfilling the assumptions (\mathcal{A}) be given. Let the limit problem (\mathcal{P}_{0}) admit a nonzero solution (i.e. det B=0). Let the matrix function V and the operators T and T_{0} be defined by (4,7), (4,10) and

$$(4,11) T_0: \delta \in \mathcal{R}_{\mathbf{v}} \to T_0(\delta) = T(0)(V(.)\delta) \in \mathcal{R}_{\mathbf{v}}.$$

Suppose

(I) the limit problem (\mathcal{P}_0) possesses a solution x_0 such that $T_0(\delta_0) = 0$ for $\delta_0 = (b_0)_{\mathscr{V}}$, where

$$b_0 = \left(\int_a^b \left[d_t \int_a^b K_2(s) G(s, t) ds \right] x_0(t) \right);$$

(II) there exists $Q_0 > 0$ such that Φ and Λ are continuous in $(x, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0] = \mathcal{U}(x_0, Q_0; \mathcal{AC}) \times [0, \varepsilon_0]$ and for all $(x, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0]$ possess a G-derivative with respect to x continuous in $(x, \varepsilon) \in \mathcal{U}_0 \times [0, \varepsilon_0]$;

(III) the Jacobian

$$\det\left(\frac{\mathrm{D}T_0}{\mathrm{D}\delta}\left(\delta_0\right)\right)$$

is nonzero.

Then there exists $\varepsilon^* > 0$ such that for all $\varepsilon \in [0, \varepsilon^*]$ there exists a unique solution $x^*(\varepsilon)$ to $(\mathscr{P}_{\varepsilon})$ continuous in $\varepsilon \in [0, \varepsilon^*]$ as a mapping $[0, \varepsilon^*] \to \mathscr{AC}$ and such that $x^*(0) = x_0$.

Proof. Let us denote $\mathcal{B} = \mathcal{AC} \times \mathcal{R}_{\nu}$ and

$$F: (x, \delta) \in \mathcal{B} , \quad \varepsilon \in \left[0, \varepsilon_0\right] \to \left(\begin{matrix} -x + V(.) \, \delta + \varepsilon S(\varepsilon) \, (x) \\ T(\varepsilon) \, (V(.) \, \delta + \varepsilon S(\varepsilon) \, (x)) \end{matrix}\right) \in \mathcal{B} .$$

(\mathscr{B} is a B-space with the norm $\|(x,\delta)\|_{\mathscr{B}} = \|x\|_{\mathscr{A}\mathscr{C}} + \|\delta\|$.)

We shall verify that the operator F fulfils all the assumptions of Proposition 1.

(i) For $(x, \delta) \in \mathcal{B}$ we have

$$F(0)(x,\delta) = \begin{pmatrix} -x + V(.) \delta \\ T(0)(V(.) \delta) \end{pmatrix} = \begin{pmatrix} -x + V(.) \delta \\ T_0(\delta) \end{pmatrix}.$$

Let x_0 be a solution to (\mathcal{P}_0) such that $T_0(\delta_0) = 0$ for $\delta_0 = (b_0)_{\mathcal{F}}$, where

$$b_0 = \left(\int_a^b \left[d_t \int_a^b K_2(s) \ G(s, t) \ ds \right] x_0(t) \right).$$

Then $x_0 = V(.) \delta_0$ and hence $F(0)(x_0, \delta_0) = 0$.

(ii) Since the operators S and T have the same smoothness properties as Φ and Λ , there exist $\varepsilon_1 > 0$ and $\varrho_1 > 0$ such that F fulfils the assumption (ii) of Proposition 1 on $\mathscr{U}_1 \times [0, \varepsilon_1] = \mathscr{U}((x_0, \delta_0), \varrho_1; \mathscr{B}) \times [0, \varepsilon_1]$ while for $(x, \delta, \varepsilon) \in \mathscr{U}_1 \times [0, \varepsilon_1]$ and $(\bar{x}, \bar{\delta}) \in \mathscr{B}$,

$$\begin{aligned} \left[F'_{(x,\delta)}(\varepsilon)\left(x,\delta\right)\right]\left(\bar{x},\bar{\delta}\right) &= \\ &= \begin{pmatrix} -\bar{x} + V(.)\bar{\delta} + \varepsilon[S'_{x}(\varepsilon)\left(x\right)]\bar{x} \\ \left[T'_{x}(\varepsilon)\left(V(.)\delta + \varepsilon S(\varepsilon)\left(x\right)\right)\right]\left(V(.)\bar{\delta}\right) + \varepsilon[T'_{x}(\varepsilon)\left(V(.)\delta + \varepsilon S(\varepsilon)\left(x\right)\right)\right]\left[S'_{x}(\varepsilon)\left(x\right)\right]\bar{x} \end{pmatrix}. \end{aligned}$$

In particular

$$J_{0}(\bar{x},\bar{\delta}) = \left[F'_{(x,\delta)}(0)\left(x_{0},\delta_{0}\right)\right](\bar{x},\bar{\delta}) = \begin{pmatrix} -\bar{x} + V(.)\bar{\delta} \\ \left[T'_{x}(0)\left(V(.)\delta\right)\right]\left(V(.)\bar{\delta}\right) \end{pmatrix} = \begin{pmatrix} -\bar{x} + V(.)\bar{\delta} \\ \left[\frac{DT_{0}}{D\delta}\left(\delta_{0}\right)\right]\bar{\delta} \end{pmatrix}.$$

(iii) Given an arbitrary couple $(x, \delta) \in \mathcal{B}$,

$$J_0(\bar{x},\,\bar{\delta}) = \begin{pmatrix} x \\ \delta \end{pmatrix}$$

iff

$$\bar{\delta} = \left[\frac{DT_0}{D\delta} \left(\delta_0\right)\right]^{-1} \delta \text{ and } \bar{x} = V(.) \bar{\delta} + x.$$

Thus the operator J_0 possesses an inverse

$$J_0^{-1}: (x, \delta) \in \mathcal{B} \to \begin{pmatrix} x + V(.) \left[\frac{\mathrm{D}T_0}{\mathrm{D}\delta} \left(\delta_0 \right) \right]^{-1} \delta \\ \left[\frac{\mathrm{D}T_0}{\mathrm{D}\delta} \left(\delta_0 \right) \right]^{-1} \delta \end{pmatrix} \in \mathcal{B},$$

the boundedness of J_0^{-1} being obvious.

Applying Proposition 1 we complete the proof.

The system (4,9) can be simplified by means of the following

Proposition 2. There exists $\varepsilon_1 > 0$ such that for every $\varepsilon \in [0, \varepsilon_1]$ and $\delta \in \mathcal{R}_{\mathbf{v}}$ there exists a unique solution $x = \Xi(\varepsilon)(\delta) \in \mathcal{AC}$ of the equation

$$(4.9)_2 -x + V(.) \delta + \varepsilon S(\varepsilon)(x) = 0,$$

the operator $\Xi: \mathcal{R}_v \times [0, \epsilon_1] \to \mathscr{AC}$ being continuous in (δ, ϵ) and locally lipschitzian in δ near $\epsilon = 0$.

Proof. The existence and uniqueness of the desired solution $x = \Xi(\varepsilon)(\delta)$ for all $\delta \in \mathcal{R}_{\nu}$ and $\varepsilon \in [0, \varepsilon_2]$ with some $\varepsilon_2 > 0$ and the continuity of Ξ in $(\delta, \varepsilon) \in \mathcal{R}_{\nu} \times [0, \varepsilon_2]$ are evident. Given an arbitrary $\delta_0 \in \mathcal{R}_{\nu}$, let us denote

$$x_0 = V(.) \delta_0 = \Xi(0) (\delta_0).$$

Let $\beta = \beta(\delta_0) > 0$, $\varepsilon_3 = \varepsilon(\delta_0) > 0$ ($\varepsilon_3 \le \varepsilon_2$) and $\varrho = \varrho(\delta_0) > 0$ be such that

$$||S(\varepsilon)(x_1) - S(\varepsilon)(x_1)||_{\mathscr{A}\mathscr{C}} \leq \beta ||x_2 - x_1||_{\mathscr{A}\mathscr{C}}$$

for all $x_1, x_2 \in \mathcal{U}(x_0, \varrho; \mathcal{AC})$ and $\varepsilon \in [0, \varepsilon_3]$. In virtue of the continuity of Ξ in (δ, ε) there exist $\sigma = \sigma(\delta_0) > 0$ and $\varepsilon_4 = \varepsilon_4(\delta_0) > 0$ ($\varepsilon_4 \le \varepsilon_3$) such that $\Xi(\varepsilon)(\delta) \in \mathcal{U}(x_0, \varrho; \mathcal{AC})$ for all $\delta \in \mathcal{U}(\delta_0, \sigma; \mathcal{R}_v)$ and $\varepsilon \in [0, \varepsilon_4]$. Hence for $\delta_1, \delta_2 \in \mathcal{U}(\delta_0, \sigma; \mathcal{R}_v)$ and $\varepsilon \in [0, \varepsilon_4]$

$$\|\Xi(\varepsilon)(\delta_2) - \Xi(\varepsilon)(\delta_1)\|_{\mathscr{A}\mathscr{C}} \leq \|V\|_{\mathscr{A}\mathscr{C}} \|\delta_2 - \delta_1\| + \varepsilon\beta\|\Xi(\varepsilon)(\delta_2) - \Xi(\varepsilon)(\delta_1)\|_{\mathscr{A}\mathscr{C}}.$$

Wherefrom, putting $\varepsilon_1 = \varepsilon_1(\delta_0) = \min(\varepsilon_4, (2\beta)^{-1})$ our assertion follows.

Remark 4,2. It could be shown that if $\delta_0 \in \mathcal{R}_v$, $x_0 = V(.) \delta_0$ and S possesses for all $(x, \varepsilon) \in \mathcal{U}(x_0, \varrho_1; \mathcal{AC}) \times [0, \varepsilon_1]$ $(\varrho_1 > 0)$ a G-derivative with respect to x continuous in $(x, \varepsilon) \in \mathcal{U}(x_0, \varrho_1; \mathcal{AC}) \times [0, \varepsilon_1]$, then there exist $\varepsilon_2 > 0$ and $\varrho_2 > 0$

such that for all $(\delta, \varepsilon) \in \mathcal{U}(\delta_0, \varrho_2; \mathcal{R}_{\nu}) \times [0, \varepsilon_2] \equiv \text{possesses a G-derivative with respect to } \delta \text{ continuous.in } (\delta, \varepsilon) \in \mathcal{U}(\delta_0, \varrho_2; \mathcal{R}_{\nu}) \times [0, \varepsilon_2]. \text{ (For } \overline{\delta} \in \mathcal{R}_{\nu}$

$$\left[\Xi_{\delta}'(\varepsilon)(\delta)\right]\bar{\delta} = \left(i - \varepsilon \left[S_{x}'(\varepsilon)(\Xi(\varepsilon)(\delta))\right]\right)^{-1} \left(V(.)\bar{\delta}\right),\,$$

where i denotes the identity operator in \mathscr{AC} .)

Inserting $x = \Xi(\varepsilon)(\delta)$ into $(4,9)_2$ we get

(4,12)
$$\Theta(\varepsilon)(\delta) = T(\varepsilon)(\Xi(\varepsilon)(\delta)) = 0.$$

The second existence theorem for the critical case is based on the notion of the Brouwer topological degree and does not require any assumptions of the differentiability of Φ and Λ . It follows from the following proposition. (For the definition of the Brouwer topological degree see J. Cronin [4].)

Proposition 3. Let \mathcal{G} be a bounded open set in \mathcal{R}_{ν} and let f be a continuous mapping of the closure $\overline{\mathcal{G}}$ of \mathcal{G} in \mathcal{R}_{ν} into \mathcal{R}_{ν} . Let $f(\delta) \neq 0$ on the frontier $\partial \mathcal{G}$ of \mathcal{G} in \mathcal{R}_{ν} and let the degree $d(f,\mathcal{G},0)$ of f with respect to $0 \in \mathcal{R}_{\nu}$ and \mathcal{G} be nonzero. Then the equation $f(\delta) = 0$ has at least one solution in \mathcal{G} and there exists $\eta > 0$ such that for every continuous mapping $g: \overline{\mathcal{G}} \to \mathcal{R}_{\nu}$ with $\sup_{\delta \in \partial \mathcal{G}} \|f(\delta) - g(\delta)\| < \eta$ there exists in \mathcal{G} at least one solution of the equation $g(\delta) = 0$.

Proof. The mapping

$$h: \delta \in \overline{\mathscr{G}}, \quad t \in [0, 1] \to h(\delta, t) = f(\delta) + (1 - t)(g(\delta) - f(\delta))$$

is a continuous mapping of $\overline{\mathscr{G}} \times [0, 1]$ into \mathscr{R}_{ν} with $h(\delta, 0) = g(\delta)$ and $h(\delta, 1) = f(\delta)$. If

$$||f(\delta)|| \ge 2\eta > 0$$
 and $||f(\delta) - g(\delta)|| < \eta$ on $\partial \mathcal{G}$,

then for all $\delta \in \partial \mathcal{G}$ and $t \in [0, 1]$

$$||h(\delta, t)|| \ge ||f(\delta)|| - ||f(\delta) - g(\delta)|| > \eta > 0.$$

Proposition 2 is now an immediate consequence of Existence Theorem ([4]. p. 32) and of Theorem of Invariance under Homotopy ([4], p. 31).

Theorem 4,3. Let the boundary value problem (\mathcal{P}_{ϵ}) fulfilling the assumptions (\mathcal{A}) be given. Let the limit problem (\mathcal{P}_{0}) admit a nonzero solution (i.e. $\det B = 0$). Let the matrix function V and the operators T and T_{0} be given by (4,7), (4,10) and (4,11). Suppose

(I) the limit problem (\mathcal{P}_0) possesses a solution x_0 such that $T_0(\delta_0)=0$ for $\delta_0=(b_0)_{\mathscr{V}}$, where

$$b_0 = \left(\int_a^b \left[d_t \int_a^b K_2(s) G(s, t) ds \right] x_0(t) \right)$$

(II) there exists a bounded open subset \mathcal{G} of \mathcal{R}_{ν} such that $T_0(\delta) \neq 0$ for $\delta \in \partial \mathcal{G}$ and $d(T_0, \mathcal{G}, 0) \neq 0$.

Then there exists $\varepsilon^* > 0$ such that for every $\varepsilon \in [0, \varepsilon^*]$ there exists at least one solution to $(\mathcal{P}_{\varepsilon})$.

Proof. It is easy to verify that the operator $T_0: R_v \times [0, \varepsilon_0] \to \mathcal{R}_v$ is locally lipschitzian in $\delta \in \mathcal{R}_v$ near $\varepsilon = 0$ and continuous in $\varepsilon \in [0, \eta_1]$ with some $\eta_1 > 0$ small enough for any $\delta \in \mathcal{R}_v$ fixed. By Heine-Borel Covering Theorem we may assume that there exists $\eta_2 > 0$ such that Θ is uniformly continuous in $(\delta, \varepsilon) \in \overline{\mathcal{G}} \times \times [0, \eta_2]$. Applying Proposition 3 to the equation (4,12) we complete the proof.

Remark 4,3. The methods of this paragraph can be also applied if $L \in \mathcal{BV}_{m,n}$ and $\Lambda: \mathcal{AC} \to \mathcal{R}_m$, where generally $m \neq n$. Of course, the situation is no more predetermined so largely by the fact whether the limit problem (\mathcal{P}_0) admits a nonzero solution or not. Let the $(m+n') \times (n+n')$ -matrix B be defined by (4,4), (3,9), (3,10) and (3,12). Let the $n \times (n+n')$ -matrix function U and the operators $R_0: \mathcal{AC} \times [0, \varepsilon_0] \to \mathcal{AC}$ and $R: \mathcal{AC} \times [0, \varepsilon_0] \to \mathcal{R}_{n+n'}$ be given by (4,4) and (4,6). Then again an n-vector function $x \in \mathcal{AC}$ is a solution to the boundary value problem $(\mathcal{P}_{\varepsilon})$ iff a couple (x, b), where

$$b = \left(\int_a^b \left[d_t \int_a^b K_2(s) G(s, t) ds \right] x(t) \right),$$

is a solution to the system of operator equations ((4,5))

$$-x + U(.) b + \varepsilon R_0(\varepsilon)(x) = 0,$$

$$Bb + \varepsilon R(\varepsilon)(x) = 0.$$

Let m < n and rank (B) = m + n'. Let us denote $\mathcal{M} = \{1, 2, ..., m + n'\}$ and let $\mathcal{V} \subset \mathcal{N}_0$ be such that $v(\mathcal{V}) = n - m$ and det $B_{\mathcal{M}, \mathcal{V}^*} \neq 0$. Putting $\gamma = b_{\mathcal{V}^*}$, $\delta = b_{\mathcal{V}}$, $B_1 = B_{\mathcal{M}, \mathcal{V}^*}$ and $B_2 = B_{\mathcal{M}, \mathcal{V}}$, (4.5) becomes

$$(4,13) -x + V(.) \delta + \varepsilon S(\varepsilon)(x) = 0,$$

where the $n \times (n-m)$ -matrix function V and the operator S are given by (4,10). Given an arbitrary $\delta_0 \in \mathcal{R}_{n-m}$, the function $x_0 = V(.)$ δ_0 is a solution to the limit problem (\mathcal{P}_0) and by Proposition 2 there exists $\varepsilon^* > 0$ such that for all $\varepsilon \in [0, \varepsilon^*]$ there exists a unique solution $x^*(\varepsilon)$ to $(\mathcal{P}_{\varepsilon})$ continuous in $\varepsilon \in [0, \varepsilon^*]$ as a mapping $[0, \varepsilon^*] \to \mathscr{AC}$ and such that $x^*(0) = x_0$. The given boundary value problem $(\mathcal{P}_{\varepsilon})$ can be treated similarly as the noncritical case for m = n, although the limit problem (\mathcal{P}_0) possesses a nonzero solution. On the other hand, if $\varepsilon > 0$, m > n and rank (B) = n + n', then (4,5) is equivalent to the system

$$(4.14) -x + \varepsilon S(\varepsilon)(x) = 0, T(\varepsilon)(x) = 0$$

with S and T defined analogously as in (4,10). Now the function x is uniquely determined by $(4,14)_1$ and to be a solution to the given problem (\mathcal{P}_{ϵ}) with $\epsilon > 0$ it has to satisfy $(4,14)_2$. Hence the boundary value problem (\mathcal{P}_{ϵ}) has generally no solution, though the limit problem (\mathcal{P}_0) has only the trivial solution (cf. Corollary 1 of Theorem 3,1). In the other cases we meet an analogous situation.

5. LINEAR BOUNDARY VALUE PROBLEM — FUNCTIONAL ANALYSIS APPROACH

Let us turn back to the linear boundary value problem (P) given by

(5,1)
$$\dot{x} - A(t) x - \int_{a}^{b} [d_{s}G(t, s)] x(s) = f(t),$$

where $A \in \mathcal{L}_{n,n}^1$, $f \in \mathcal{L}^1$, $G \in \mathcal{L}^2[\mathcal{BV}]$, $L \in \mathcal{BV}_{m,n}$ and $l \in \mathcal{R}_m$. Without any loss of generality we may assume that for all $t \in J$ G(t, .) and L are continuous from the right on the open interval (a, b).

In [20] D. Wexler derived the true adjoint (in the sense of functional analysis) to the boundary value problem

$$\dot{x} - A(t)x = f(t), Lx = l,$$

where $A \in \mathcal{L}_{n,n}^1$, $f \in \mathcal{L}^1$, L is a continuous linear mapping of \mathscr{AC} into some B-space Λ and $l \in \Lambda$. In this paragraph we apply his ideas to the boundary value problem (\mathscr{P}) . The special form of the operator L and the different choice of a dual space to the space \mathscr{C} of continuous functions on J (measures are replaced by functions of bounded variation) enables us to prove that the problem (\mathscr{P}^*) derived in § 3 ((3,16), (3,17)) is equivalent to the true adjoint of (\mathscr{P}) .

First, we have to introduce some new notations.

 \mathscr{L}^{∞} denotes the B-space of all row *n*-vector functions measurable and essentially bounded on J. It is well-known that \mathscr{L}^{∞} is a dual B-space to the B-space $\mathscr{L}^1 = \mathscr{L}^1_{n,1}$ of column *n*-vector functions L-integrable on J. The value of a functional $y' \in \mathscr{L}^{\infty}$ on $x \in \mathscr{L}^1$ is given by

$$\langle x, y' \rangle_{\mathscr{L}} = \int_{s}^{b} y'(s) x(s) ds$$

and the norm of y' is $||y'||_{\infty} = \sup_{t \in J} \text{ess } ||y'(t)||$. Functions from \mathcal{L}^{∞} which coincide a.e. on J are identified with one another.

 \mathscr{BV}^+ is the B-space of all row *n*-vector functions of bounded variation on J and continuous from the right on (a, b) ($\mathscr{BV}^+ \subset \mathscr{BV}_{1,n}$). \mathscr{C}^* denotes the dual B-space

to the space $\mathscr C$ of column *n*-vector functions continuous on J, i.e. $\mathscr C^*$ is formed by all functions from $\mathscr B\mathscr V^+$ which vanish at a. Given an arbitrary functional $y' \in \mathscr C^*$, its value on $x \in \mathscr C$ is given by

$$\langle x, y' \rangle_{\mathscr{C}} = \int_a^b [dy'(t)] x(t)$$

and $||y'||_{\mathscr{C}^*} = \operatorname{var}_a^b y'$. The zero element of \mathscr{C}^* is the function vanishing everywhere on J.

 $\mathscr{A}\mathscr{C}^*$ denotes the dual B-space to the B-space $\mathscr{A}\mathscr{C}$ of column *n*-vector functions absolutely continuous on J. The value of a functional $y' \in \mathscr{A}\mathscr{C}^*$ on $x \in \mathscr{A}\mathscr{C}$ is denoted by $\langle x, y' \rangle_{\mathscr{A}\mathscr{C}}$. Let us notice that we can consider ([20] 2,1) $\mathscr{C}^* \subset \mathscr{A}\mathscr{C}^*$ and $\langle x, y' \rangle_{\mathscr{A}\mathscr{C}} = \langle x, y' \rangle_{\mathscr{C}}$ for $x \in \mathscr{A}\mathscr{C}$ and $y' \in \mathscr{C}^*$. Moreover, since the topology of $\mathscr{A}\mathscr{C}$ is stronger than that induced by $\mathscr{C}(\|x\|_{\mathscr{C}} = \sup_{J} \|x(t)\|)$ and $\mathscr{A}\mathscr{C}$ is dense in \mathscr{C} , the zero elements of $\mathscr{A}\mathscr{C}^*$ and \mathscr{C}^* coincide.

The operators

$$\begin{aligned} D: x \in \mathscr{AC} &\to \dot{x} \in \mathscr{L}^1 \ , & A: x \in \mathscr{AC} &\to A(t) \ x(t) \in \mathscr{L}^1 \ , \\ G: x \in \mathscr{AC} &\to \int_a^b \left[\mathrm{d}_s G(t,s) \right] x(s) \in \mathscr{L}^1 \ , & \mathscr{B}_1: x \in A\mathscr{C} \to Dx - Ax - Gx \in \mathscr{L}^1 \end{aligned}$$

$$\mathcal{B}_2: x \in \mathcal{AC} \to \int_a^b [dL(s)] x(s) \in \mathcal{R}_m$$

are linear and continuous. Hence the operator

(5,3)
$$\mathscr{B}: x \in \mathscr{A}\mathscr{C} \to \begin{pmatrix} \mathscr{B}_1 x \\ \mathscr{B}_2 x \end{pmatrix} \in \mathscr{L}^1 \times \mathscr{R}_m$$

is linear and continuous, too. Its adjoint \mathcal{B}^* is a linear continuous operator $\mathcal{L}^{\infty} \times \mathcal{R}_m^* \to \mathcal{AC}^*$ defined on $(y', \lambda') \in \mathcal{L}^{\infty} \times \mathcal{R}_m^*$ by

$$\langle \mathcal{B}_1 x, y' \rangle_{\mathscr{L}} + \lambda' (\mathcal{B}_2 x) = \langle x, \mathcal{B}^*(y', \lambda') \rangle_{\mathscr{A}\mathscr{C}} \text{ for all } x \in \mathscr{A}\mathscr{C}.$$

The boundary value problem (P) can be now written in the form

(5,4)
$$\mathscr{B}x = \begin{pmatrix} f \\ l \end{pmatrix}.$$

Let us derive an explicit form for \mathscr{B}^* . For $x \in \mathscr{AC}$ and $(y', \lambda') \in \mathscr{L}^{\infty} \times \mathscr{R}_m^*$ we have

$$\langle x, \mathcal{B}^*(y', \lambda') \rangle_{\mathscr{A}^{\mathscr{C}}} = \langle \mathcal{B}_1 x, y' \rangle_{\mathscr{L}} + \lambda' (\mathcal{B}_2 x) = \langle Dx, y' \rangle_{\mathscr{L}} - \langle Ax, y' \rangle_{\mathscr{L}} - \langle Gx, y' \rangle_{\mathscr{L}} + \lambda' (\mathcal{B}_2 x) = \langle x, D^* y' - A^* y' - G^* y' + \mathcal{B}_2^* \lambda' \rangle_{\mathscr{A}^{\mathscr{C}}}$$

and

$$\mathscr{B}^*(y',\lambda') = D^*y' - A^*y' - G^*y' + \mathscr{B}_2^*\lambda',$$

where D^* , A^* , G^* and \mathcal{B}_2^* are adjoint operators to D, A, G and \mathcal{B}_2 , respectively. Thus the adjoint equation to (5,4) is

(5,5)
$$D^*y' - A^*y' - G^*y' + \mathcal{B}_2^*\lambda' = 0$$

(where 0 means the zero element of \mathscr{AC}^* , of course).

Given an arbitrary $x \in \mathscr{AC}$ and $y' \in \mathscr{L}^{\infty}$, it holds by Lemma 2,7

$$\int_a^b y'(t) \left(\int_a^b [d_s G(t,s)] x(s) \right) dt = \int_a^b \left[d_t \int_a^b y'(s) \left(G(s,t) - G(s,a) \right) ds \right] x(t).$$

As a consequence, since $\int_a^b y'(s) (G(s, t) - G(s, a)) ds \in \mathscr{C}^*$, we have

$$\langle x, G^*y' \rangle_{\mathscr{A}\mathscr{C}} = \langle Gx, y' \rangle_{\mathscr{L}} = \left\langle x, \int_a^b y'(s) \left(G(s, t) - G(s, a) \right) ds \right\rangle_{\mathscr{C}}$$

and

(5,6)
$$G^*: y' \in \mathscr{L}^{\infty} \to \int_a^b y'(s) \left(G(s,t) - G(s,a) \right) ds \in \mathscr{C}^*.$$

By a similar argument the operators A^* and \mathcal{B}_2^* are defined by

$$(5,7) A^*: y' \in \mathscr{L}^{\infty} \to \int_{a}^{t} y'(s) A(s) ds \in \mathscr{C}^*$$

and

$$(5,8) B_2^*: \lambda' \in \mathcal{R}_m^* \to \lambda'(L(t) - L(a)) \in \mathcal{C}^*.$$

Furthermore,

$$(5.9) D^*: y' \in \mathscr{C}^* \to -y'(t) + R(y')(t) \in \mathscr{C}^*,$$

where

(5,10)
$$R(y')(t) = \begin{cases} y'(a) & \text{for } t = a, \\ 0 & \text{for } a < t < b, \\ y'(b) & \text{for } t = b. \end{cases}$$

The operator Dx - Ax maps \mathscr{AC} onto \mathscr{L}^1 . Hence $y' \in \mathscr{L}^{\infty}$ being an arbitrary solution to $D^*y' - A^*y' = 0$, y'(t) = 0 a.e. on J. Moreover, given an arbitrary $g' \in \mathscr{C}^*$, the equation

$$(5,11) D*y' - A*y' = g'$$

has a solution in \mathcal{L}^{∞} iff

where X denotes again the fundamental matrix solution of Dx - Ax = 0 (cf. (3,3)). Suppose $g' \in \mathscr{C}^*$ and (5,11) has a solution in \mathscr{L}^{∞} . Then this solution is unique in \mathscr{L}^{∞} . Let us put for $t \in J$

$$z'(t) = -\left(\int_a^t [\mathrm{d}g'(s)] X(s)\right) X^{-1}(t).$$

Since $z' \in \mathcal{C}^*$ and $R(z')(t) \equiv 0$ by (5,10) and (5,12), we have by (5,7), (5,9), Lemma 1,1 and (3,3)

$$D^*z' - A^*z' = -z'(t) + \int_a^t \left(\int_a^s [dg'(\sigma)] X(\sigma) \right) X^{-1}(s) A(s) ds =$$

$$= -z'(t) + \int_a^t [dg'(s)] \left(X(s) \int_s^t X^{-1}(\sigma) A(\sigma) d\sigma \right) = g'(t).$$

It follows that z' is the unique solution of (5,11) in \mathcal{L}^{∞} . Applying this to (5,5) and taking into account (5,6)-(5,8), we obtain that to any solution $(y',\lambda') \in \mathcal{L}^{\infty} \times \mathcal{R}_m^*$ of (5,5) there exists a solution (η',λ') of (5,5) such that $\eta' \in \mathcal{BV}^+$, η' is continuous at a from the right and at b from the left and $y'(t) = \eta'(t)$ a.e. on $J(y' = \eta' \text{ in } \mathcal{L}^{\infty})$. Consequently, to find all solutions of (5,5) in $\mathcal{L}^{\infty} \times \mathcal{R}_m^*$, it is sufficient to consider instead of \mathcal{B}^* its restriction \mathcal{B}_0^* on $\mathcal{V} \times \mathcal{R}_m^*$, where \mathcal{V} is formed by all functions from \mathcal{BV}^+ which are continuous at a from the right and at b from the left. By (5,6)-(5,9)

$$\mathscr{B}_0^*(y',\lambda') = -y'(t) + R(y')(t) - \int_a^t y'(s) A(s) ds + \lambda'(L(t) - L(a)) - \int_a^b y'(s) (G(s,t) - G(s,a)) ds \in \mathscr{C}^*.$$

In other words, the equation (5,5) for $(y', \lambda') \in \mathcal{L}^{\infty} \times \mathcal{R}_{m}^{*}$ is equivalent to the equation

$$(5,13) -y'(t) + R(y')(t) - \int_a^t y'(s) A(s) ds + \lambda'(L(t) - L(a)) - \int_a^b y'(s) (G(s,t) - G(s,a)) ds = 0 on J$$

for $(y', \lambda') \in \mathscr{V} \times \mathscr{R}_m^*$. In particular, (5,13) yields

$$y'(a) - y'(a) = 0$$
 for $t = a$,

$$(5,14) \quad y'(t) = -\int_a^t y'(s) A(s) ds + \lambda'(L(t) - L(a)) - \int_a^b y'(s) (G(s,t) - G(s,a)) ds$$
for $t \in (a,b)$,

and

$$(5,15) \quad 0 = -\int_a^b y'(s) \, A(s) \, ds + \lambda'(L(b) - L(a)) - \int_a^b y'(s) \, (G(s,b) - G(s,a)) \, ds$$

for t = b.

Furthermore, from (5,14) we have

$$(5,16) y'(a) = y'(a+) = \lambda'(L(a+) - L(a)) - \int_a^b y'(s) (G(s, a+) - G(s, a)) ds$$

and consequently (5,14) becomes

(5,17)
$$y'(t) = y'(a) - \int_{a}^{t} y'(s) A(s) ds + \lambda'(L(t) - L(a+)) - \int_{a}^{b} y'(s) (G(s, t) - G(s, a+)) ds \text{ for } t \in (a, b).$$

Making use of (5,15), (5,14) can be modified as follows

(5,18)
$$y'(t) = \int_{t}^{b} y'(s) A(s) ds - \lambda'(L(b) - L(t)) +$$
$$+ \int_{a}^{b} y'(s) (G(s, b) - G(s, t)) ds \quad \text{for} \quad t \in (a, b).$$

Thus

$$(5,19) y'(b) = y'(b-) = -\lambda'(L(b) - L(b-)) + \int_a^b y'(s) (G(s,b) - G(s,b-)) ds$$

and

(5,20)
$$y'(t) = y'(b) + \int_{t}^{b} y'(s) A(s) ds + \lambda'(L(t) - L(b-)) - \int_{a}^{b} y'(s) (G(s, t) - G(s, b-)) ds \quad \text{for} \quad t \in (a, b).$$

Let us define

$$G_0(t,s) = \begin{cases} G(t,a+) \text{ for } t \in J \text{ and } s = a, \\ G(t,s) \text{ for } t \in J \text{ and } a < s < b, \\ G(t,b-) \text{ for } t \in J \text{ and } s = b, \end{cases} L_0(s) = \begin{cases} L(a+) \text{ for } s = a, \\ L(s) \text{ for } a < s < b, \\ L(b-) \text{ for } s = b, \end{cases}$$

$$C(t) = G(t, a+) - G(t, a)$$
 and $D(t) = G(t, b) - G(t, b-)$ for $t \in J$ and $M = L(a+) - L(a)$, $N = L(b) - L(b-)$.

Then from (5,16), (5,17), (5,19) and (5,20) we can conclude that the equation (5,13) (and hence also (5,5)) is equivalent to the system of equations for $(y', \gamma') \in \mathcal{L}^{\infty} \times \mathcal{R}_{m}^{*}(\gamma' = -\lambda')$

(5,21)
$$y'(t) = y'(a) - \int_a^t y'(s) A(s) ds - \gamma'(L_0(t) - L_0(a)) - \int_a^b y'(s) (G_0(s, t) - G_0(s, a)) ds \quad \text{on} \quad J,$$

$$(5,22) y'(a) = -\gamma' M - \int_a^b y'(s) C(s) ds, y'(b) = \gamma' N + \int_a^b y'(s) D(s) ds.$$

In the introduced notation, the original boundary value problem (\mathcal{P}) assumes the form

$$\dot{x} = A(t) x + C(t) x(a) + D(t) x(b) + \int_{a}^{b} [d_{s}G_{0}(t, s)] x(s) + f(t),$$

$$M x(a) + N x(b) + \int_{a}^{b} [dL_{0}(s)] x(s) = l$$

and (5,21), (5,22) is exactly its adjoint (\mathcal{P}^*) derived in § 3 ((3,16), (3,17)).

As a consequence we have that the adjoint (\mathcal{P}^*) of (\mathcal{P}) from § 3 and the true adjoint (5,5) of (\mathcal{P}) are equivalent.

From the fundamental "alternative" theorem concerning linear equations in B-spaces ([5] VI, § 6) and from Theorem 3,1 it follows that the operator \mathscr{B} of the boundary value problem (\mathscr{P}) defined by (5,3) has a closed range in $\mathscr{L}^1 \times \mathscr{R}_n$.

Remark. The closedness of the range $\mathscr{B}(\mathscr{AC})$ of the operator \mathscr{B} can be also shown directly in a similar way as D. Wexler did in [20] § 3 for the operator

$$x \in \mathscr{AC} \to \begin{pmatrix} \dot{x} - A(t) x \\ Lx \end{pmatrix} \in \mathscr{L}^1 \times \mathscr{R}_m$$

where L is a continuous linear mapping of \mathscr{AC} into some B-space Λ . In fact, let the matrix B and the operator

$$\Psi: \begin{pmatrix} f \\ l \end{pmatrix} \in \mathcal{L}^1 \times \mathcal{R}_m \to \Psi(f, l) = w \in \mathcal{R}_{m+n}$$

be defined by (4,4), (3,9), (3,10) and (3,12). Let us put

$$\Theta:b\in R_{n+n'}\to Bb\in \mathcal{R}_{m+n'}.$$

Given $f \in \mathcal{L}^1$ and $l \in \mathcal{R}_m$, the corresponding boundary value problem (\mathcal{P}) possesses a solution (i.e. $(f', l')' \in \mathcal{B}(\mathcal{AC})$) iff $\Psi(f, l) \in \Theta(\mathcal{R}_{n+n'})$. Hence

$$\mathscr{B}(\mathscr{A}\mathscr{C}) = \Psi_{-1}(\Theta(\mathscr{R}_{n+n'})).$$

Since Ψ and Θ are continuous linear operators and dim $\Theta(\mathcal{R}_{n+n'}) < \infty$, the set $\Psi_{-1}(\Theta(\mathcal{R}_{n+n'}))$ is certainly closed.