

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log121

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen (with rectilinear edges) joining the open vertical intervals $G = \{c\} \times (I \setminus E_c)$ and $H = \{d\} \times (I \setminus E_d)$. (If $G = H = \emptyset$ we include the whole of S in F; while if, for example, $H = \emptyset$ but $G \neq \emptyset$ then we include the whole of S except for the open triangle joining G to the point (d, z), where (c, z) is the mid-point of G.) It is easy to verify that the resulting set F is closed, and it clearly has the other required properties.

Theorem 2. Let $f: I \to I$ be such that there is a partition $I = \bigcup_{n=1}^{\infty} A_n$ with each restriction $f \mid A_n$ continuous. Then given $\varepsilon > 0$ there exists a closed set $F \subseteq I \times I$ such that $F \cap \operatorname{Gr}(f) = \emptyset$ and $m(F_x) \ge 1 - \varepsilon$ for all $x \in I$.

Proof. Let $\sum \varepsilon_n$ be a convergent series of positive terms with sum less than ε . By Theorem 1 there exists for each n a closed set $F_n \subseteq I \times I$ such that $F_n \cap \operatorname{Gr}(f \mid A_n) = \emptyset$ and $m[(F_n)_x] \ge 1 - \varepsilon_n$ for all $x \in I$. The set $F = \cap F_n$ has the required properties.

Theorem 3. There exists a function $f: I \times I$ of Baire class 1 such that I cannot be partitioned into countably many sets A_n with each restriction $f \mid A_n$ continuous. Proof. In view of Theorem 2, it is sufficient for f to have the property that $F \cap Gr(f) \neq \emptyset$ for every closed set $F \subseteq I \times I$ which satisfies $F_x \neq \emptyset$ for all $x \in I$. It is known [3] that there exists a function with G_δ graph having the stated property; this is not quite enough, but the example constructed explicitly in [4] is lower semi-continuous and therefore in the first Baire class.

Note added 13 January 1973. In a paper by L. Keldysh (Sur les fonctions premières mesurables B, Dokl. Akd. Nauk SSSR (N.S.) 5 (1934), 192–197) it was shown that for every α there exists a function $f:I \to I$ of Baire class α , such that I cannot be partitioned into countably many sets A_n with each restriction f/A_n of class less than α , thereby answering a question of P. S. Novikov, who had already proved the result stated above as Theorem 3.

References

- [1] K. Karták: Problém 2, Čas. pěst. mat. 91 (1966), p. 104.
- [2] I. Vrkoč: Remark about the relation between measurable and continuous functions. Čas. pěst. mat. 96 (1971), 225-228.
- [3] E. Michael: G_{δ} sections and compact-covering maps. Duke Math. J. 36 (1969), 125–127.
- [4] Roy O. Davies: A non-Prokhorov space. Bull. London Math. Soc. 3 (1971), 341-342.

Author's address: Dept. of Mathematics, The University, Leicester. LE1 7RH. England.