

Werk

Label: Table of literature references

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098 | log109

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

- (A): If $\mathcal{S}(3)$ is a void set, the assertion $[\mathcal{A}2]$ holds.
- (B): If the set $\mathcal{S}(3)$ is non-void, the assertion [A1] is valid, where $\mathcal{D}_1 = \mathcal{D}_2 = \mathfrak{h}^1_{\mathcal{S}(3)}$, $V = V_{7*}$ $W = W_7$ and $R = R_7$.
- **3.4. Problem** (\mathscr{P}_3). Theorem 3.4.1. Let the problem (\mathscr{P}_3) with $\alpha = 0$ and $\omega = p/q$ be given, where p, q are relatively prime natural numbers.
- (A): If p is an odd number, the assertion [A2] holds, where $\mathscr{F} = \mathscr{C}(\mathscr{I}; \mathscr{H}^2_{2\pi})$ or $\mathscr{F} = \mathscr{C}^{(1)}(\mathscr{I}; \mathscr{H}^1_{2\pi})$, $\mathscr{F}_0 = \mathscr{H}^3_{2\pi}$ and $\mathscr{F}_1 = \mathscr{H}^2_{2\pi}$.
- (B): Let p=2m be an even number and let $\mathcal{S}(4)$ denote the set $\{k \in \mathcal{M} \mid k/m = 0 \text{ odd number}\}$. Then the assertion [A1] is valid, where \mathcal{F} , \mathcal{F}_0 and \mathcal{F}_1 are the same spaces as above and $\mathcal{D}_1 = \mathfrak{h}^2_{\mathcal{S}(4)}$, $\mathcal{D}_2 = \mathcal{H}^2_{2\pi}$, $V = V_9$, $W = W_9$ and $R = R_9$.
- **Theorem 3.4.2.** Let the problem (\mathcal{P}_3) with $\alpha=0$ be given, where the number ω satisfies the assumption $[\mathcal{L}\varrho]$ for a natural $\varrho\geq 2$. Then the assertion $[\mathcal{A}2]$ is valid, where $\mathcal{F}=\mathscr{C}(\mathcal{I};\mathcal{H}^{\varrho+1}_{2\pi})$ or $\mathcal{F}=\mathscr{C}^{(1)}(\mathcal{I};\mathcal{H}^{\varrho}_{2\pi})$, $\mathcal{F}_0=\mathcal{H}^{\varrho+2}_{2\pi}$ and $\mathcal{F}_1=\mathcal{H}^{\varrho+1}_{2\pi}$.
- **Theorem 3.4.3.** Let the problem (\mathcal{P}_3) with $\alpha \neq 0$ and $\omega = p/q$ be given, where p, q are relatively prime natural numbers. Let $\mathcal{S}(5)$ be the set $\{k \in \mathcal{M} \mid S_5(k) = 0\}$, where $S_5(k)$ is defined by (2.4.14), and let the spaces \mathcal{F} , \mathcal{F}_0 , \mathcal{F}_1 have one of the following meanings:
 - (i) If p is an odd number, $\mathscr{F} = \mathscr{C}(\mathscr{I}; \mathscr{H}^2_{2\pi})$ or $\mathscr{F} = \mathscr{C}^{(1)}(\mathscr{I}; \mathscr{H}^1_{2\pi}), \mathscr{F}_0 = \mathscr{H}^3_{2\pi}$ and $\mathscr{F}_1 = \mathscr{H}^2_{2\pi}$.
 - (ii) If p = 2m is an even number, either $\mathcal{F} = \mathscr{C}(\mathcal{I}; \mathcal{H}_{2\pi}^3)$ (or $\mathcal{F} = \mathscr{C}^{(1)}(\mathcal{I}; \mathcal{H}_{2\pi}^2)$), $\mathcal{F}_0 = \mathcal{H}_{2\pi}^4, \mathcal{F}_1 = \mathcal{H}_{2\pi}^3$ or $\mathcal{F} = \mathscr{C}(\mathcal{I}; [\mathcal{H}_{2\pi}^2]_{\mathcal{F}(4)}^1)$ (or $\mathcal{F} = \mathscr{C}^{(1)}(\mathcal{I}; [\mathcal{H}_{2\pi}^1]_{\mathcal{F}(4)}^1)$), $\mathcal{F}_0 = [\mathcal{H}_{2\pi}^3]_{\mathcal{F}(4)}^1, \mathcal{F}_1 = [\mathcal{H}_{2\pi}^2]_{\mathcal{F}(4)}^1$, where $\mathcal{F}(4)$ means the set $\{k \in \mathcal{M} \mid k/m = 0 \text{ odd number}\}$.

Then the following propositions hold:

- (A): If $\mathcal{S}(5)$ is a void set, the assertion $[\mathcal{A}2]$ is valid.
- (B): If the set $\mathcal{S}(5)$ is non-void, the assertion [A1] holds, where $\mathcal{D}_1 = \mathcal{D}_2 = \mathfrak{h}^1_{\mathcal{S}(5)}$, $V = V_{10}$, $W = W_{10}$ and $R = R_{10}$.

Bibliography

- [1] O. Vejvoda: The mixed problem and periodic solutions for a linear and weakly nonlinear wave equation in one dimension, Rozpravy ČSAV, Řada matematických a přírodních věd, 1970, ročník 80, sešit 3, Academia Praha.
- [2] O. Vejvoda: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension, I, Czech. Math. J., 14 (89), 1964, 341-382.
- [3] N. Krylová, O. Vejvoda: A linear and weakly nonlinear equation of a beam: the boundary-value problem for free extremities and its periodic solutions, Czech. Math. J., 21 (96), 1971, 535 to 566
- [4] A. J. Hinčin: Continued fractions (Russian), 3rd edition, Fizmatgiz, Moscow, 1961.

Author's address: 757 01 Valašské Meziříčí, Nerudova 21.