

Werk

Label: Article **Jahr:** 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0098|log101

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

EMBEDDING THE POLYTOMIC TREE INTO THE n-CUBE

Ivan Havel, Petr Liebl, Praha (Received October 13, 1972)

In the whole paper a "graph" is a nondirected, possibly infinite graph without loops and multiple edges, expressed as an ordered pair $\mathscr{G} = \langle V, E \rangle$, where V is the set of vertices and E is the set of edges, a subset of $V^{(2)}$, the set of all unordered pairs of elements of V. $\mathscr{G}' = \langle V', E' \rangle$ is said to be the subgraph of $\mathscr{G} = \langle V, E \rangle$ induced by V' iff $V' \subset V$, $E' = E \cap V'^{(2)}$. $\mathscr{G}' = \langle V', E' \rangle$ is said to be a partial subgraph of $\mathscr{G} = \langle V, E \rangle$ iff $V' \subset V$, $E' \subset E \cap V'^{(2)}$. (Cf [3].) By] [we denote the post-office function.

Definition 1. Let S be a set, by 2^S denote as usual the set of all subsets of S. Put $E(S) = \{(A, B) \mid A \subset S, B \subset S, \text{ card } (A - B) = 1\}$. (A - B) denotes here the symmetric difference of A and B. By the S-cube we understand the graph $\mathcal{K}(S) = \{2^S, E(S)\}$.

Definition 2. By $\Re(S)$ denote the class of all graphs isomorphic to some partial subgraph of $\mathscr{K}(S)$. If $S = \{1, 2, ..., n\}$, write $\Re(S) = \Re_n$. Put $\overline{\Re} = \{\mathscr{G} \mid \exists S, \mathscr{G} \in \Re(S)\}$. By \Re denote the class of all graphs \mathscr{G} such that for any finite partial subgraph \mathscr{G}' of $\mathscr{G}, \mathscr{G}' \in \overline{\Re}$.

Trivially, if $\mathscr{G} \in \Re(S)$ and \mathscr{G}' is a partial subgraph of \mathscr{G} , then $\mathscr{G}' \in \Re(S)$.

Definition 3. Let $\mathcal{G} = \langle V, E \rangle$ be a graph, F a set. Assume there exists a mapping $\psi : E \to F$ such that

- (i) if $(e_1, e_2, ..., e_r)$ is the sequence of edges of a finite open path in \mathscr{G} , then there is an element of F that appears an odd number of times in the sequence $(\psi(e_1), \psi(e_2), ..., \psi(e_r))$.
- (ii) if $(f_1, f_2, ..., f_s)$ is the sequence of edges of a finite closed path in \mathscr{G} , then all the elements of F appear an even number (possibly null) of times in the sequence $(\psi(f_1), \psi(f_2), ..., \psi(f_s))$.

Then we call ψ a \overline{C} -valuation of \mathscr{G} . Let n be a natural number. If card $(\psi(E)) \leq n$, we call ψ a C_n -valuation of \mathcal{G} .

Definition 4. By $\overline{\mathbb{C}}$ denote the class of all graphs \mathscr{G} such that there exists a \overline{C} valuation of G, by C denote the class of all graphs G such that for any finite partial subgraph \mathscr{G}' of $\mathscr{G}, \mathscr{G}' \in \overline{\mathbb{C}}$. Let n be a natural number. By \mathbb{C}_n denote the class of all graphs \mathcal{G} such that there exists a C_n -valuation of \mathcal{G} .

Remark 1. If $\mathscr{G} \in \mathbb{C}$ is finite, then for some $n, \mathscr{G} \in \mathbb{C}_n$. Further, $\mathbb{C}_n \subset \mathbb{C} \subset \mathbb{C}$.

Theorem 1 in [2] asserts that

- (a) $\Re_n \subset \mathfrak{C}_n$
- (b) $\mathscr{G} \in \mathfrak{C}_n$ connected $\Rightarrow \mathscr{G} \in \mathfrak{R}_n$
- (c) $\mathfrak{C} = \mathfrak{R}$.

Remark 2. Let \mathcal{F} be an arbitrary tree. Then condition (ii) of Def. 3 is empty and moreover, putting F = E, ψ the identity map, we have $\mathcal{T} \in \mathbb{C}$ and hence $\mathcal{T} \in \mathbb{R}$. Also, $\mathcal{F} \in \Omega_n \Leftrightarrow \mathcal{F} \in \mathfrak{C}_n$.

In what remains, we shall be concerned with trees only, and with the problem to find to a tree \mathcal{F} the smallest n such that $\mathcal{F} \in \mathcal{R}_n$. We shall denote this n by dim (\mathcal{F}) .

To study trees the vertices of which have their degree bounded from above by a given number, we introduce three infinite classes of trees, closely related to each other. $\mathcal{F}_l^{(k)}$, the "polytomic tree", is a straightforward generalization of the dichotomic tree \mathcal{D}_l of [1]. $\mathcal{F}_l^{(k)}$ may be considered to be a star of k rays, each endpoint of a ray being again the center of a new k-star, and this procedure repeated l times. So, there are vertices of "level" 1 to (l+1), where the (single) vertex of level 1 has degree k, the vertices of the outermost level (l+1) have degree 1 and the remaining vertices have degree (k+1). ${}^b\mathcal{F}_l^{(k)}$ and ${}^s\mathcal{F}_l^{(k)}$ arise from $\mathcal{F}_l^{(k)}$ if it is completed in such a way that all its vertices have either degree 1 or degree (k+1).

Definition 5. Let $k \ge 2$ and $l \ge 1$ be natural numbers. Define

$$\mathscr{T}_{1}^{(k)} = \langle V_{1}^{(k)}, E_{1}^{(k)} \rangle, \quad {}^{\flat}\mathscr{T}_{1}^{(k)} = \langle {}^{\flat}V_{1}^{(k)}, {}^{\flat}E_{1}^{(k)} \rangle, \quad {}^{\sharp}\mathscr{T}_{1}^{(k)} = \langle {}^{\sharp}V_{1}^{(k)}, {}^{\sharp}E_{1}^{(k)} \rangle$$

as follows:

Put

$$\begin{split} V_{l}^{(k)} &= \left\{ v_{j}^{(i)} \ \middle| \ 1 \leq i \leq l+1, \ 1 \leq j \leq k^{l-1} \right\} \\ {}^{\flat}V_{l}^{(k)} &= \left\{ v_{j}^{(i)} \ \middle| \ (1 \leq i \leq l+1) \ \lor \ (-l \leq i \leq -1), \ 1 \leq j \leq k^{|l|-1} \right\} \\ {}^{\sharp}V_{l}^{(k)} &= \left\{ v_{j}^{(i)} \ \middle| \ 1 \leq |i| \leq l+1, \ 1 \leq j \leq k^{|l|-1} \right\}. \end{split}$$

Further, for $\mathbf{v}_{j}^{(i)} \in {}^{*}V_{l}^{(k)}$, $\mathbf{v}_{j'}^{(i')} \in {}^{*}V_{l}^{(k)}$, $(\mathbf{v}_{j}^{(i)}, \mathbf{v}_{j'}^{(i')}) \in {}^{*}E_{l}^{(k)} \Leftrightarrow (|i'| = |i| - 1) \& (j' = 1) \& (i' = -1)$. Denote $(\mathbf{v}_{1}^{(1)}, \mathbf{v}_{1}^{(-1)})$ by $\mathbf{e}_{1}^{(0)}$ and further $(\mathbf{v}_{j}^{(i)}, \mathbf{v}_{j'}^{(i')}) \in E^{(k)}$ by $\mathbf{e}_{j'}^{(i)}$, if |i| < |i'|. ${}^{*}\mathcal{F}_{l}^{(k)}$ resp. $\mathcal{F}_{l}^{(k)}$ are defined as the subgraphs of ${}^{*}\mathcal{F}_{l}^{(k)}$ induced by ${}^{*}V_{l}^{(k)}$ resp. $V_{l}^{(k)}$.

Fig. 1a, b, c shows $\mathcal{F}_2^{(4)}$, $\mathcal{F}_2^{(4)}$ and $\mathcal{F}_2^{(4)}$.

As is seen, ${}^{\sharp}\mathcal{F}_{l}^{(k)}$ consists of two trees $\mathcal{F}_{l}^{(k)}$ with their "roots" joined by a new edge whereas ${}^{\flat}\mathcal{F}_{l}^{(k)}$ arises in a similar manner from one $\mathcal{F}_{l}^{(k)}$ and one $\mathcal{F}_{l-1}^{(k)}$ (for $l \geq 2$). As for the number of vertices, card ${}^{\sharp}V_{l}^{(k)} = 2(k^{l+1}-1)/(k-1)$, card ${}^{\flat}V_{l}^{(k)} = (k^{l+1}+k^{l}-2)/(k-1)$ and card $V_{l}^{(k)} = (k^{l+1}-1)/(k-1)$. In [1], $\mathcal{F}_{l}^{(2)}$ is denoted by \mathscr{D}_{l} . Theorem 3 of [1] asserts that for $l \geq 2$, dim $\mathcal{F}_{l}^{(2)} = l+2$ (dim $\mathcal{F}_{l}^{(2)} = 2$ being trivial). Another partial result of the general problem of dim $\mathcal{F}_{l}^{(k)}$ is supplied by the following theorem. But first a

Remark 3. ${}^*\mathcal{F}_l^{(k)} \in \mathfrak{R}_n \Rightarrow {}^b\mathcal{F}_l^{(k)} \in \mathfrak{R}_n \Rightarrow \mathcal{F}_l^{(k)} \in \mathfrak{R}_n \Rightarrow {}^*\mathcal{F}_l^{(k)} \in \mathfrak{R}_{n+1}$. The first two implications being trivial, consider for the third the two constituent $\mathcal{F}_l^{(k)}$ of ${}^*\mathcal{F}_l^{(k)}$ as having a C_n -valuation with the same F and the joining edge being assigned a new element f_{n+1} .

Theorem 1.

$$\dim ({}^{\sharp}\mathcal{T}_{2}^{(2p)}) = \dim ({}^{\flat}\mathcal{T}_{2}^{(2p)}) = \dim (\mathcal{F}_{2}^{(2p)}) = 3p + 1,$$

$$\dim ({}^{\sharp}\mathcal{T}_{2}^{(2p+1)}) = \dim ({}^{\flat}\mathcal{T}_{2}^{(2p+1)}) = 3p + 3,$$

$$\dim (\mathcal{F}_{2}^{(2p+1)}) = 3p + 2.$$

Proof. In view of Remark 3, it is sufficient to prove

$$\begin{split} {}^{\sharp}\mathcal{T}_{2}^{(2p)} \in \mathfrak{K}_{3p+1} \;, \quad \mathcal{T}_{2}^{(2p+1)} \in \mathfrak{K}_{3p+2} \;, \quad \mathcal{T}_{2}^{(2p)} \notin \mathfrak{K}_{3p} \;, \quad \mathcal{T}_{2}^{(2p+1)} \notin \mathfrak{K}_{3p+1} \;, \\ {}^{\flat}\mathcal{T}_{2}^{(2p+1)} \notin \mathfrak{K}_{3p+2} \;. \end{split}$$

1. To construct a C_{3p+1} -valuation ψ of ${}^{\sharp}\mathcal{F}_{2}^{(2p)}$, put

$$F = \left\{ a'_{p+1}, a'_{p+2}, ..., a'_{2p}, a_1, a_2, ..., a_{2p+1} \right\}.$$

Further define

(*)
$$\psi(e_1^{(0)}) = a_{2p+1},$$

$$\psi(e_j^{(1)}) = a_j \quad (1 \le j \le 2p),$$

$$\psi(e_j^{(-1)}) = a_j' \quad (1 \le j \le 2p),$$

where we write for short

$$a_t'' = a_t (1 \le t \le p), \quad a_t'' = a_t' (p + 1 \le t \le 2p), \quad a_{2p+1}'' = a_{2p+1}.$$

Instead of proceeding by defining explicitly $\psi(e_j^{(2)})$ and $\psi(e_j^{(-2)})$, observe that the edges $e_j^{(2)}$ and $e_j^{(-2)}$ are classified naturally into groups of 2p by the j of the $e_j^{(1)}$ they are adjacent to:

$$G_{j}^{(1)} = \left\{ e_{i}^{(2)} \mid 2p(j-1) + 1 \le t \le 2pj \right\}, \quad 1 \le j \le 2p,$$

$$G_{j}^{(-1)} = \left\{ e_{i}^{(-2)} \mid 2p(j-1) + 1 \le t \le 2pj \right\}, \quad 1 \le j \ge 2p.$$

Obviously a permutation of the valuation ψ inside one group is immaterial. So, we define merely a set of 2p values for each group putting

$$\psi(G_{j}^{(1)}) = \{a_{t} \mid j+1 \leq t \leq \min((j+p), (2p+1))\} \cup \{a_{t} \mid 1 \leq t \leq j-p-1\} \cup \{a'_{t} \mid p+1 \leq t \leq 2p\},$$

$$\psi(G_{j}^{(-1)}) = \{a''_{t} \mid j+1 \leq t \leq \min((j+p), (2p+1))\} \cup \{a''_{t} \mid 1 \leq t \leq j-p-1\} \cup \{a_{t} \mid p+1 \leq t \leq 2p\}.$$

(One such valuation ψ is shown for p=2 on Fig. 2, where for transparency we write 1 for a_1 , 3' for a_3' etc.) (Observe that considering the valuation induced by ψ on ${}^{\flat}\mathcal{F}_2^{(2p)}$ and looking at $e_1^{(0)}$ as " $e_{2p+1}^{(1)}$ " and at $\{e_j^{(-1)} \mid 1 \leq j \leq 2p\}$ as " $G_{2p+1}^{(1)}$ ", ψ on them meets the rules (*) and (**).)

Let us now show that ψ so defined is a C-valuation. For paths of odd length the condition (i) of Def. 3 holds trivially, so we concern ourselves only with paths of length 2 or 4 in $\mathcal{F}_2^{(2p)}$. The paths of length 2 being well valuated by inspection, assume there is a path p of length 4 such that two elements of F, say x and y, appear on it twice each. The center of any path of length 4 in $\mathcal{F}_2^{(2p)}$ is either in $v_1^{(1)}$ or in $v_1^{(-1)}$. Assume for p the former happens. Hence x and y must be both unprimed a's, say a_r and a_s .

So it must simultaneously be $a_r \in G_s^{(1)}$, $a_s \in G_r^{(1)}$, with possible r = k + 1 or s = k + 1. That however is impossible by definition of $\psi(G_j^{(1)})$. What concerns the case that the center of p is in $v_1^{(-1)}$, observe the symmetry in ψ which permits us to repeat the former argument with interchange of a_j and a'_j $(p + 1 \le j \le 2p)$. Q.E.D.

2. To construct a C_{3p+2} -valuation of $\mathcal{F}_2^{(2p+1)}$, consider the valuation used for $^*\mathcal{F}_2^{(2p)}$, specifically that induced on $^b\mathcal{F}_2^{(2p)}$. $\mathcal{F}_2^{(2p+1)}$ arises from $^b\mathcal{F}_2^{(2p)}$ by adding one $e_j^{(2)}$ in each $G_j^{(1)}$. The desired C_{3p+2} -valuation is simply obtained by modifying ψ in the way that to each mentioned new $e_j^{(2)}$ the new value a_{2p+1}' is assigned. Obviously this does not spoil the property (i) of Def. 3. Q.E.D.

3. We proceed now to show that ${}^{\flat}\mathcal{F}_{2}^{(2p+1)} \notin \Omega_{3p+2}$. Assume the contrary. Consider ${}^{\flat}\mathcal{F}_{2}^{(2p+1)}$ as a partial subgraph of \mathcal{K}_{3p+2} . Without loss of generality assume $v_{1}^{(1)}$ is in the vertex \emptyset of \mathcal{K}_{3p+2} , and the 2p+2 neighbours of $v_{1}^{(1)}$ in ${}^{\flat}\mathcal{F}_{2}^{(2p+1)}$ are in the vertices $\{j\}$ for $1 \leq j \leq 2p+2$ of \mathcal{K}_{3p+2} . It is now necessary to place the $(2p+1)(2p+2)=4p^2+6p+2$ vertices of degree 1 of the ${}^{\flat}\mathcal{F}_{2}^{(2p+1)}$ into the $\binom{3p+2}{2}-\binom{p}{2}=4p^2+5p+1$ vertices $\{i,j\}$ of \mathcal{K}_{3p+2} with $1 \leq i \leq 3p+2$, $1 \leq j \leq 3p+2$, $i \neq j$, such that not both i and j are >2p+2. As this is not possible by reason of numbers, the proof is complete.

4. To complete the proof of the whole theorem, we have to show $\mathcal{T}_2^{(2p)} \notin \mathfrak{R}_{3p}$, $\mathcal{T}_2^{(2p+1)} \notin \mathfrak{R}_{3p+1}$. To that purpose we show that from $\mathcal{T}_2^{(k)} \in \mathfrak{R}_n$ follows $2n \geq 3k+1$. Indeed, if $\mathcal{T}_2^{(k)}$ is a partial subgraph of \mathcal{K}_n , there are certain k^2 vertices of $\mathcal{T}_2^{(k)}$ to be placed into $\binom{n}{2} - \binom{n-k}{2}$ vertices of \mathcal{K}_n , hence $k^2 \leq \binom{n}{2} - \binom{n-k}{2}$ and the desired inequality follows.

To be able to derive statements about much wider classes of trees than $\mathcal{F}_{l}^{(k)}$, ${}^{*}\mathcal{F}_{l}^{(k)}$, ${}^{*}\mathcal{F}_{l}^{(k)}$, we observe that ${}^{*}\mathcal{F}_{l}^{(k)}$ and ${}^{*}\mathcal{F}_{l}^{(k)}$ are in a sense the most general trees with given diameter and given maximum degree of the vertices. Strictly speaking, the following holds:

Lemma 1. Let the maximum degree of the vertices of the tree \mathcal{F} be k+1. If the diameter of \mathcal{F} equals 2l resp. (2l+1), then \mathcal{F} is a partial subgraph of ${}^{\flat}\mathcal{F}_{l}^{(k)}$ resp. ${}^{\sharp}\mathcal{F}_{l}^{(k)}$.

Proof is obvious.

Corollary 1. Suppose the maximum degree of the vertices of the tree \mathcal{T} is $d \ge 1$ and the diameter of \mathcal{T} is ≤ 5 . If d = 2a then $\dim \mathcal{T} \le 3a$, if d = 2a + 1 then $\dim \mathcal{T} \le 3a + 1$. There is, on the other hand, to any $d \ge 1$ a tree \mathcal{T} with maximum degree of the vertices equal d and diameter ≤ 4 such that $\dim \mathcal{T} = 3a$ for d = 2a resp. $\dim \mathcal{T} = 3a + 1$ for d = 2a + 1.

Proof. The inequalities follow, for $d \ge 3$, from L 1 and Th 1. On the other hand observe that $\mathcal{F}_2^{(k)}$ has diameter 4 and maximal degree of its vertices (k+1). The cases d=1 and d=2 are trivial.

For $\mathcal{F}_l^{(2)}$ and $\mathcal{F}_2^{(k)}$ the results obtained are exact. For k > 2, l > 2 we are only able to give bounds for dim $\mathcal{F}_l^{(k)}$. From one side, we only succeeded in finding trivial bounds:

Remark 4. dim $\mathcal{F}_{l}^{(k)} \leq kl$. The proof of this rests on the following C_{kl} -valuation of $\mathcal{F}_{l}^{(k)}$. For the edges of each level of $\mathcal{F}_{l}^{(k)}$, k different elements of F are reserved and distributed in such a way that adjacent edges are assigned different values. In fact, an insubstantially better bound is obtained by using Th 1. for the first two levels, and applying a slightly finer reasoning to the remaining ones. For k > 2, l > 2 it holds that dim $\mathcal{F}_{l}^{(k)} \leq 3/2k + 1 + (l-2)(k-1)$.

Theorem 2. dim $\mathcal{F}_{1}^{(k)} > kl/e$ where e = 2,71...

Proof. Assume $\mathcal{F}_{l}^{(k)}$ to be isomorphic to some partial subgraph of \mathcal{K}_{n} . Then comparing the number of vertices, $2^{n} \geq \operatorname{card} V_{l}^{(k)} > k^{l}$ and hence

$$(1) n > l \log_2 k.$$

Consider first $2 \le k \le 8$. Here we have $e \log_2 k > k$ and hence $n > l \log_2 k > kl/e$ and the desired inequality holds. Assume now k > 8. It follows from (1) that

$$(2) n > 3l.$$

The isomorphism may be assumed such that to the vertex $v_1^{(1)}$ of $\mathcal{F}_l^{(k)}$ the vertex \emptyset of \mathcal{K}_n corresponds. Then to the k^l vertices of distance l from $v_1^{(1)}$ in $\mathcal{F}_l^{(k)}$ there must

correspond vertices of \mathcal{K}_n whose cardinalities are either l or less than l by an even number, hence

(3)
$$k^{l} < \binom{n}{l} + \binom{n}{l+2} + \binom{n}{l-4} + \dots$$

where the sum at the right is finite, ending either with n or 1 depending on the parity of l. As

$$\binom{n}{p-2} / \binom{n}{p} \le \binom{n}{l-2} / \binom{n}{l} = q$$

for $p \leq l$, we may write

$$(4) \quad \binom{n}{l} + \binom{n}{l-2} + \binom{n}{l-4} + \dots < \binom{n}{l} (1+q+q^2+\dots) = \binom{n}{l} / (1-q).$$

Using (2) we have, however,

$$q = l(l-1)/((n-l+1)(n-l+2)) < l(l-1)/((2l+1)(2l+2)) < 1/4$$

and this yields together with (3) and (4)

$$(5) k^1 < \frac{4}{3} \binom{n}{l}.$$

For estimating $\binom{n}{l}$ we use the trivial $n(n-1)\dots(n-l+1) < n^l$ and Stirling's formula

$$l! = \sqrt{(2\pi l)(l/e)^l} \exp(\theta_l)$$

where $|\theta_l| < 1/(12l)$ and get from (5)

$$k^{l} < \frac{4}{3} \exp(-\theta_{l}) (ne/l)^{l} (2\pi l)^{-1/2}$$
.

Finally

$$\left(\frac{ne}{kl}\right)^{l} > \frac{3}{4}\sqrt{(2\pi l)}\exp\left(\theta_{l}\right) = \sqrt{[9/8\pi l}\exp\left(2\theta_{l}\right)] > \sqrt{[9/8\pi l}\exp\left(-1/6\right)] > 1,$$
Q.E.D.

Corollary 2. Suppose the maximum degree of the vertices of the tree \mathcal{T} is $d \geq 3$ and the diameter of \mathcal{T} is D > 5. Then $\dim \mathcal{T} \leq \frac{1}{2}(d-1)D$. On the other hand, given $d \geq 3$ and D > 5, there is a tree \mathcal{T} with maximum degree of the vertices equal d and of diameter $\leq D$ such that $\dim \mathcal{T} >](D-1)/2[.(d-1)/e]$.

Proof. The first inequality follows from Lemma 1, Remark 4 and Remark 3. The proof of the second statement follows by observing that for the tree \mathcal{F} we may take $\mathcal{F}_{l}^{(k)}$ for l =](D-1)/2[and k = d-1.