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EMBEDDING THE POLYTOMIC TREE INTO THE »n-CUBE

IvaN HAVEL, PETR Li1EBL, Praha
(Received October 13, 1972)

In the whole paper a ‘“‘graph” is a nondirected, possibly infinite graph without
loops and multiple edges, expressed as an ordered pair ¥ = (¥, E), where V is the
set of vertices and E is the set of edges, a subset of V(?), the set of all unordered pairs
of elements of V. ¥’ = (V’, E) is said to be the subgraph of ¢ = (¥, E) induced
by VVif V eV, E=EnV'®. & = (V' E) is said to be a partial subgraph
of  =(V,E)iff V' =V, E' =« EnV'®. (Cf [3].) By ][ we denote the post-office
function.

Definition 1. Let S be a set, by 25 denote as usual the set of all subsets of S. Put
E(S)={(4,B)|A = S, B = S, card (A ~ B) = 1}. (4 ~ B) denotes here the sym-
metric difference of 4 and B. By the S-cube we understand the graph 4(S) =
= (25, E(S)).

Definition 2. By R(S) denote the class of all graphs isomorphic to some partial
subgraph of 2£°(S). If S = {1, 2, ..., n}, write R(S) = K,. Put R = {¢ | 35, ¥ € K(5)}.
By K denote the class of all graphs ¢ such that for any finite partial subgraph %’
of 9,9 eR.

Trivially, if ¢ € R(S) and ¢ is a partial subgraph of ¥, then ¥’ € K(S).

Definition 3. Let 4 = (V, E) be a graph, F a set. Assume there exists a mapping
Y : E - F such that

(i) if (ey, e, ..., €,) is the sequence of edges of a finite open path in &, then there is
an element of F that appears an odd number of times in the sequence (Y(e,),

Y(ey), ..., ¥(e,)).

(i) if (fy, f5, ..., f5) is the sequence of edges of a finite closed path in %, then all the
elements of F appear an even number (possibly null) of times in the sequence

W), ¥(f2)s - ¥(£))-
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Then we call § a C-valuation of 4. Let n be a natural number. If card (Y(E)) <n,
we call  a C,-valuation of 4.

Definition 4. By T denote the class of all graphs ¢ such that there exists a C-
valuation of ¢, by € denote the class of all graphs ¢ such that for any finite partial
subgraph ¥’ of ¢, ¥’ € €. Let n be a natural number. By €, denote the class of all
graphs ¢ such that there exists a C,-valuation of 4.

Remark 1. If 4 € T is finite, then for some n, € @, Further, €, =« € < €.
Theorem 1 in [2] asserts that

(2) &, < G,
(b) ¥ €€, connected = Y€ &,
(c) €=8.

Remark 2. Let 7 be an arbitrary tree. Then condition (ii) of Def. 3 is empty and
moreover, putting F = E, y the identity map, we have 7 € € and hence 7 € ].
Also, T e &, <« 7 €(Q,.

In what remains, we shall be concerned with trees only, and with the problem to
find to a tree J the smallest n such that 7 € &,. We shall denote this n by dim (7).

Fig. 1.
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To study trees the vertices of which have their degree bounded from above by
a given number, we introduce three infinite classes of trees, closely related to each
other. 7P, the “polytomic tree”, is a straightforward generalization of the dichoto-
mic tree 9, of [1]. 7 may be considered to be a star of k rays, each endpoint of
a ray being again the center of a new k-star, and this procedure repeated I times. So,
there are vertices of “level” 1 to (I + 1), where the (single) vertex of level 1 has
degree k, the vertices of the outermost level (I + 1) have degree 1 and the remaining
vertices have degree (k + 1). "7 and *7" arise from 77§ if it is completed in such
a way that all its vertices have either degree 1 or degree (k + 1).

Definition 5. Let kK = 2 and I = 1 be natural numbers. Define
T = VP, EPY, TP = OV, ED, TP = VP, D)
as follows:
Put
VP ={0pP|15ig1+1, 1555k
R =P |1sisli+)v(=lgis-1), 1<)k
WP =P |12i| 1+, 155 <k

Further, for o{? e ¥, +{7e WP, (o2, o)) e EP = (|¢| = |i| — ) & (' =
=1j[k*[ v ((i = 1) & (i’ = —1)). Denote (v, v{"") by e{” and further (v{’,
v§{7) e E® by e, if |i| < |i"]. T resp. 7 are defined as the subgraphs of *7{"
induced by *V{® resp. V.

Fig. 1a, b, c shows *7°(, ' (M and 799,

As is seen, *7{) consists of two trees 7 (¥ with their “roots” joined by a new edge
whereas "7 arises in a similar manner from one 7 and one 7, (for I = 2).
As for the number of vertices, card *V® = 2(k'*! — 1)/(k — 1), card "'V =
= (k"' + k' — 2)/(k — 1) and card VP = (k'*! = 1)[(k — 1). In [1], T§? is
denoted by 9,. Theorem 3 of [1] asserts that for I = 2,dim 7 =1 + 2(dim 7 =
= 2 being trivial). Another partial result of the general problem of dim I is sup-
plied by the following theorem. But first a

Remark 3. *7 Ve, =" Ve, =>TPeQ, =7 PeK,,,. The first two
implications being trivial, consider for the third the two constituent 7 of *77®
as having a C,-valuation with the same F and the joining edge being assigned a,new
element f, , ;.

~ Theorem 1.
dim (*7¢P) = dim ("7¢?) = dim(F$?) =3p + 1,
dim (*FE**V) = dim ("T V) = 3p + 3,
dim (F73?*Y) =3p + 2.
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Proof. In view of Remark 3, it is sufficient to prove
2 2 2p+1 2 2p+1
ygp)eﬁ3p+l’ '7—(21, )ER3p+29 '7—(2p)¢R3p: ‘7-(2p )¢Rap+x,
b 2p+1
TGV ¢ R4z

1. To construct a C,,,,-valuation y of *7 P, put

F={a} 1,542, ..., B3y @y, Gz, ..0y Bapyq} -
Further define
(‘) .p(eS.O)) = aZp+1 ]
W) =a; (1=j=2p),
Uei™) =af (1=j<=2p),

where we write for short
ay=a,(1=t<p), al=a;(p+1=1=2p), alyuy=as,,.

Instead of proceeding by defining explicitly y/(e{®) and y(e{~?), observe that the
edges e{® and e{~? are classified naturally into groups of 2p by the j of the (") they
are adjacent to:

GV ={eP|2p(j - 1) +1=t=2pj}, 1=js=2p,
GV ={e"?|2p(j —1)+1=t=<2pj}, 1<j=2p.

Obviously a permutation of the valuation y inside one group is immaterial. So, we:
define merely a set of 2p values for each group putting

(*%) W(G) ={a|j+1<t<min((j+ p),(2p + 1))} U
v{a|1lst<j—-p—-1}ufa|p+1=1t=2p},

Y(GS™) ={a}|j +1 <t <min((j+ p),(2p + )} U
vial[t1stsj—-p-1jufa|p+1=1=2p).

(One such valuation y is shown for p = 2 on Fig. 2, where for transparency we write
1 for a,, 3 for a} etc.) (Observe that considering the valuation induced by y on *7Z?
and looking at e{” as “e$),,” and at {e{"" |1 < j < 2p} as “GS),,”, ¥ on them
meets the rules () and (x#).)

Let us now show that y so defined is a C-valuation. For paths of odd length the
condition (i) of Def. 3 holds trivially, so we concern ourselves only with paths of length 2
or 4 in 7P, The paths of length 2 being well valuated by inspection, assume there
is a path p of length 4 such that two elements of F, say x and y, appear on it twice
each. The center of any path of length 4 in 7P is either in v{" or in v{~ ). Assume
for p the former happens. Hence x and y must be both unprimed a’s, say a, and a,.
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So it must simultaneously be a, € G*?, a, e Gi", with possible r = k + 1 ors = k+
+ 1. That however is impossible by definition of y(G"). What concerns the case
that the center of p is in v{™"), observe the symmetry in  which permits us to repeat
the former argument with interchange of a; and aj (p + 1 £ j < 2p). QE.D.

31 4’ 3 4
4 5/

] 2 3| 13 =
3l o 4! O
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5
5 1 A 4
o 4 3!
2 2/ 3 1
3l
4 N
3 !
1
o 4 3'\g 4 \5
Fig. 2.

2. To construct a Cj,,,-valuation of F$?* "), consider the valuation used for
*T 2P, specifically that induced on " ¢ZP. 7PP*Y arises from 73 by adding
one e{?) in each G{". The desired Cj,, ,-valuation is simply obtained by modifying yr
in the way that to each mentioned new e{® the new value a}, ., is assigned. Obviously
this does not spoil the property (i) of Def. 3. Q.E.D.

3. We proceed now to show that "7 7+ " ¢ &, . ,. Assume the contrary. Consider
g ZP* 1 as a partial subgraph of X ;,,,. Without loss of generality assume v{") is
in the vertex @ of J5,,,, and the 2p + 2 neighbours of v{" in *F**V are
in the vertices {j} for1 < j < 2p + 2 of A5, ,. It is now necessary to place the
(2p + 1) (2p + 2) = 4p*> + 6p + 2 vertices of degree 1 of the "7?* ! into the
(31’; 2) - (’2’) = 4p* + 5p + 1 vertices {i,j} of H'3,s, with 1 < i < 3p + 2,
1 £j<3p+ 2,i = j, such that not both i and j are >2p + 2. As this is not pos-
sible by reason of numbers, the proof is complete.

4, To complete the proof of the whole theorem, we have to show 7 P ¢ R,
FTEP*D ¢ K, ,,4. To that purpose we show that from 7 € &, follows 2n = 3k + 1.
Indeed, if 7 is a partial subgraph of i, there are certain k? vertices of 7 to be

placed into (g) - (” ; k) vertices of J,, hence k? < ('2') - (n '2_ k) and the

desired inequality follows.
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To be able to derive statements about much wider classes of trees than 9,
*TP, 278, we observe that ' and *7( are in a sense the most general trees
with given diamgter and given maximum degree of the vertices. Strictly speaking, the
following holds:

Lemma 1. Let the maximum degree of the vertices of the tree I be k + 1. If the
diameter of  equals 21 resp. (21 + 1), then I is a partial subgraph of *J{
resp. *T".

Proof is obvious.

Corollary 1. Suppose the maximum degree of the vertices of the tree 7 isd = 1
and the diameter of J is <5. If d = 2a then dim J < 3a, if d = 2a + 1 then
dim J < 3a + 1. There is, on the other hand, to any d 2 1 a tree 7 with maximum
degree of the vertices equal d and diameter <4 such that dim I = 3a for d = 2a
resp. dm 9 = 3a + 1 ford = 2a + 1.

Proof. The inequalities follow, for d = 3, from L 1 and Th 1. O n the other hand
observe that 79 has diameter 4 and maximal degree of its vertices (k + 1). The
cases d = 1 and d = 2 are trivial.

For 7 and JP the results obtained are exact. For k > 2, | > 2 we are only
able to give bounds for dim 7). From one side, we only succeeded in finding trivial
bounds:

Remark 4. dim 7 < kI. The proof of this rests on the following C,;-valuation
of 7. For the edges of each level of ), k different elements of F are reserved
and distributed in such a way that adjacent edges are assigned different values. In
fact, an insubstantially better bound is obtained by using Th 1. for the first two levels,
and applying a slightly finer reasoning to the remaining ones. For k > 2, I > 2 it
holds that dim 7 < 32k + 1 + (I — 2) (k — 1).

Theorem 2. dim (" > kife where e = 2,71 ...

Proof. Assume I to be isomorphic to some partial subgraph of ",. Then com-
paring the number of vertices, 2" > card V(¥ > k'and hence

(1) n > llog, k.

Consider first 2'< k < 8 Here we have e log, k > k and hence n > Ilog, k > klfe
and the desired inequality holds. Assume now k > 8. It follows from (1) that

) n>3l.

The isomorphism may be assumed such that to the vertex v{") of (" the vertex 0
of o, corresponds. Then to the k' vertices of distance I from v{" in 7 there must
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correspond vertices of ', whose cardinalities are either | or less than ] by an even
number, hence

) k'<<'l')+(l:2)+(lf4)+...

where the sum at the right is finite, ending either with n or 1 depending on the parity

AN NEATO

for p < 1, we may write

(4) ('l’>+<l_"_2)+(lf4)+...< ('I')(l+q+q2+...)=(';)/(1—q).

Using (2) we have, however,
g=I1-1D[((n=1+D)(m—-1+2) <l =12 +1)Q2l +2)<1/4
and this yields together with (3) and (4)

Fs) k' < g(';)

For estimating <';> we use the trivial n(n — 1)...(n — I + 1) < n and Stirling’s

formula
It = /(2nl) (I]e)" exp (8;)
where |6,| < 1/(12) and get from (5) »
k' < 4 exp (—0,) (ne/l)! (2rl)~ 1%,
Finally

(H)> 3y/(2nl) exp (6) = V/[9/8n! exp (20)] > /[9[8nl exp (~1/6)] > 1,
Q.E.D.

Corollary 2. Suppose the maximum degree of the vertices of the tree 7 isd = 3
and the diameter of J is D > 5. Then dim 7 < 4(d — 1) D. On the other hand,
given d = 3 and D > 5, there is a tree I with maximum degree of the vertices
equal d and of diameter <D such that dim 7 > |(D — 1)[2[ . (d — 1)/e.

Proof. The first inequality follows from Lemma 1, Remark 4 and Remark 3.
The proof of the second statement follows by observing that for the tree ~ we may
take 7 for I = (D — 1)[2[and k = d — 1.
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