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ON THE NUMBER OF INITIAL SEGMENTS
OF A FINITE SET OF SEQUENCES (FINITE LANGUAGE)

KareL Curik and ANTONIN VRBA, Praha

(Received December 21, 1970)

Two essentially different methods for the evaluation of the number of (nonempty
and mutually different) initial segments of sequences (i.e., words or strings) which
belong to a given set of sequences (i.e., to a given finite language) are presented.
Several open problems are suggested.

1. INTRODUCTORY MOTIVATION AND BASIC NOTIONS

In the theory of automata one consideis sequential mappings, i.e. functions
whose domain is some subset of the set X* of all words or strings over a (ﬁnite)
alphabet X,i.e. X® = {£; & = x;x, ... x,wherex;e X fori = 1,2,...,nand n = 1}.
The strings or words are nothing else than finite sequences, their length being called
the length of the string and denoted by I(¢) for ¢ € X®. Further, we introduce the
empty string & characterized on the one hand by /(£) = 0 <> ¢ = ¢, on the other hand
by the fact that it is the unit of the free semigroup over X with respect to the opera-
tion of concatenation (the concatenation of the string x,x, ... x, with the string
V1V .. Ym yields the string x,Xx, ... X, 1 V5 ... V), 1.€., €& = && = & holds for each
string £ € X° U {&}. We shall write & < B provided the string a is an initial segment
of the string B, i.e., if there is £ € X* U {e} such that aé = B, and « 3 B provided it
is a proper segment, i.e. @ £ B. The maximal common initial segment of the strings o
and B will be denoted by & A . Then « A 8 = e<>a and B have different first
symbols (from the left).

The following algorithm is used for the synthesis of Mealy’s automaton for a finite
sequential mapping (see [1] or [2]):

Algorithm. To the given finite sequence of strings P = (&4, &y, ..., ?,‘,,,) over the
alphabet X, where &; = x;1x;; ... x;, for i =1,2,..., m, the sequence Q =
= (1, 25 ---» M) is constructed over the alphabet Y which is the set of all positive
integers, i.e. ; = ¥;1Viz --- Vin, Where y;; € Y, by the following recursive rule:
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1) gy =12...n4,

2) if for some p > 1 the strings #y, 71, ..., 1,—1 have been constructed, then 1, is
constructed in the following manner: Among the strings &, &,, ..., ¢, we find
a string such that (i) it has the common initial segment with &, of the maximal length
while (i) it has the minimal index; if such a (nonempty) string exists, denote its
index by f(p) so that 1 < f(p) < p and £/, is the string considered; if there is no
string with the required properties, put f(p) = 0 and assume (for formal reasons)
that &, = &; hence the function f is well defined for every i = 2, 3, ..., m; it deter-
mines uniquely the number d, = I(¢, A &) for p = 2,3, ..., m. Further we put
dy = 0 and f(1) = 0 and. finally, if s €Y is the least positive integer which occurs
in no string #y, 13, ..., N,—1, then we put y,; = y;,; for i = 1,2,..., d, (evidently
so far as d, > 0) and y, 45 =5+ (j— 1) forj=1,2,..,n, — d,
The numbers d;, i = 1, 2, ..., m found during the algorithm determine the number

m
(1) a(P) = _Zl("i - d)

i=
which obviously shows the number of positive integers which occur in the strings
NisN2s «vos Mo

Example 1. For X = {0, 1} and P = (&, &,, &3, &) the algorithm yields succes-
sively the values of the function f, the numbers d, and, finally, a(P) in the following
way:

g, =10011, n,=5; f(1)=0, d, =1¢ A &) =1t =0;
§2=.1010, ny=4; f2Q)=1, dy =1, A &pp) =1(10) =25
£ =01101, ny=5; f3) =0, dy=1U( A&ps) =Ue) =03
E,=01110, ng=5; f(4) =3, dy=1UE A Esq) = 1(011) = 3,

I

which implies a(P) = (5 - 0) + (4 —2) + (5 — 0) + (5 — 3) = 14.
Evidently 5, = 12345, n, = 1267, 5 = 89 10 11 12, 7, = 89 10 13 14.

The number a(P) is of essential importance in the theory of automata, namely, it
gives the maximal number of the inner states of Mealy’s automaton which realizes
the considered sequential mapping. Hence we may expect that a(P) does not depend
on the order of terms of the sequence P. This conjecture is supported also by the
following assertion.

Theorem 1. The number a(P) gives the number of all (nonempty and mutually
different) initial segments of the strings which occur in the finite sequence P of
strings.

Proof. Let P = (61, 62, ooy fm) Whel‘c 6, = Xi1Xi2 o0 xi,,‘ and quX for i=
=1,2,...mandj = 1,2,..., n;. We prove the theorem by mathematical induction
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with respect to k = ) n;. For k = 1 there must be precisely one n; = 1 while the
i=1

other strings are empty, hence d; = 0 and consequently, a(P) = 1. In this case the
number of initial segments is indeed equal to one. Suppose the theorem is true for
k — 1 and prove it for k > 1. Construct P* from P in the following way: In the last
nonempty string &, delete the last symbol x,,,, i.., denoting P* = ({4, {25 +- s {m)s
itis {; = & fori+ h,i=1,2,..., m while {,x,,, = &, Let f* and d] be evaluated
by applying the algorithm to P* and put n} = I(;). Then obviously n; = n} for
i%h, i=1,2,...,m while n, = ny + 1 and, similarly, f(i) = f*(i) for i + h,
i=1,2,...,m, which implies df =d; for i £ h, i =1,2,..., m. Hence only
numbers d, and dj are to be examined.

The only two cases which may occur are the following ones:

either &, is an initial segment of a string &; for 1 < i < h so that, on the one hand,
P* and P have obviously the same number of initial segments, while, on the other
hand, dj = d, — 1 holds so that a(P*) = a(P). The assumption of induction that
a(P*) gives the number of initial segments of the strings in P* implies that a(P) has
the same meaning for P;

or &, is not an initial segment of the strings &;, 1 < i < h so that, on the one hand,
P has one initial segment more than P* and, on the other hand, it is evident that
f(h) = f*(h)as well as d, = dj which means that a(P*) + 1 = a(P). Again it follows
from the assumption of induction that a(P) gives the number of initial segments
from P. The proof is complete.

Another proof of Theorem 1. It is immediately seen from the algorithm that two
initial segments of strings from P are different if and only if the corresponding initial
segments of strings from Q are different. Let us order all initial segments of strings
from Q into a sequence {yi1, Y11V12s ++» YV11V12 +++ Vings V215 Y21Y225 - Ymts
Ym1Vm2> <=+ Ym1Vmz -+ Ymmm}- 1f some member appears more than once, let it stay
only at its first occurrence and delete all its repeatings. Hence we obtain a sequence of
all mutually different initial segments of strings from Q. Evidently the algorithm is
constructed so that the number y;; gives the position of the initial segment y;;y;; ...
... yy; in the sequence. However, we know that the greatest one of numbers y;; is
equal to a(P).

2. FOREST OF SEQUENCE OF STRINGS

If with each string #; = Y43V ... Vi, Of the resulting sequence Q = (111, 12, -+ -» flm)
formed by applying the algorithm of Sec. 1 to the given sequence of strings P =
= (&, ¢35 .. &) Where &; = Xx;;X;5 ... X4, an auxiliary oriented graph G, =
= (¥}, @iy is associated where V; = {Ym Yizs oo o }’u..} and ¢; = {(J’ua .Vaz)» (Pizs
Vis)s o+os (Vine=1> Yin,)} for i=1,2,...,m, then an oriented graph G = <V, @)

where ¥V = | V; and g = | g, may be determined.
i=1 i=1
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Moreover, the described algorithm guarantees that if y;; = yy, then j = k and
that y,, = y,, as well as x;, = x,, for p=1,2,...,j, hence the binary relation
g ={(yijex;;); 1<i<mand 1 £j < n;} being a function. The domain of the
function g is obviously the set of all vertices of the graph G and the range is a subset
of the alphabet X over which all strings from P are formed.

The description of the algorithm implies immediately that the oriented graph
with labeled vertices {V, 0, X, g, g being the labeling of vertices and X the set of
values of the vertices, fulfils the following conditions:

© 2 ®

® @ O® @

Fig. 1. ) Fig. 2.

Theorem 2. Every (connected) component of the graph <V, ¢, X, g) is a rooted
oriented tree, i.e., an oriented tree with exactly one vertex — the so called root —
in which no edge ends. If v e V, v* € V are vertices such that v + v* and either both
are roots of components or there is a vertex from which edges start to both v and v*,
then g(v) + g(v*). .

However, a graph whose all connected components are trees is called a forest.
Therefore any graph <{V’, ¢’, X', g’> which is label isomorphic with {V, o, X, g)
will be called an oriented forest of the sequence of strings P. Here an isomorphism
is said to be a label isomorphism if it preserves the labeling, i.e. if it is a one-to-one
map ¢ of the set ¥’ onto V such that (v, v*) € o’ <> (w, w*) € ¢ and at the same time
g'(v) = g(w) for all v, v* e V".
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Fig. 1 shows the usual (planary) representation of the graph G = (¥, ¢} cor-
responding to the resulting sequence of strings Q from Example 1, which evident-
ly has two components. The vertex 0 marked by dotted lines which is the only
root of the graph extended in this way, could correspond to associating number zero
with the auxiliary string ¢, = ¢ from the algorithm. The advantage of such a formal
extension is that the graph obtained would be immediately a tree and not generally
a forest.

Fig. 2 shows the representation of the forest of the sequence P from Example 1.
In this representation no proper names of vettices are introduced as usual since the
vertices are distinguished by different positions of the corresponding circles.

3. INVARIANCE OF THE NUMBER a(P)

Theorem 1 implies that the number a(P) given by formula (1) on the basis of the
algorithm is independent of the order of strings in the sequence P. The following
lemma provides a proof of the invariance of a(P) on the order of strings which is
independent of the meaning of a(P) (i.e., not refering to Theorem 1).

Lemma 1. If P* is an arbitrary ordering of all members of the sequence of
strings P, then a(P*) = a(P).

Proof. It is well known that we can pass from P* to P by means of a finite number
of exchanges of two adjacent members of the sequence. Hence it is sufficient to prove
Lemma 1 for the particular case when P* differs from P just by an exchange of two
adjacent members, i.e., if P = (&, &y, ..., &E,) then P* = ({4, 5, ..., () where
m = 2 and there exists a positive integer p, 1 £ p < m such that &, = {; for i =
=1.2..,p—Lp+2,p+3,...,mwhilel,={,,;and {,,; = {,.

Further, let us assume that the algorithm was applied also to the sequence P*
and that the symbols f*, df and n} have the analogous meaning for P* as f, d;
and n; have for P. Then it follows immediately from the above assumptions that
f(G@) = f*(@) fori=1,2,..., p — 1; further, nf = n,fori=1,2,...,p—1,p+2,
p+3,...,m while ny = n,,, and ny,, = n, and, finally, d; = d} for i = 1,2, ...
..o p—1,p+2,p+3,..., m. However, this means according to (1) that to verify
the equality a(P*) = a(P) it is sufficient to show e.g. that d} + dy.; = d, + d, ;.
Indeed, we shall succeed in proving this identity in all cases.

Let us distinguish the following cases. First of all, denote @ = £, A ¢,, and
consider the possibility o = ¢ (i.e., if {pand &, | are nonempty strings then they have
not the same first symbol). Then obviously f(p) = f*(p + 1) and f(p + 1) = f*(p)
sothat &, A &y = ety A (perand Eppiny A Epit = oy A {p Which implies
obviously d, = dj, and d, 4, = dj and hence also dj + dy.y = d, + dpy;.

Therefore, let a + ¢ in the sequel. If a A {;,) = ¢ then also ;) A &, = ¢,
ie. f(p) = 0. However, this means that o A {; =¢ for i =1,2,...,p — 1 so that
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the only possibility is f(p + 1) = p. Then it is seen immediately that also f*(p) = 0
and f*(p+ 1) =p so that &, A &, =8 =g AL, and Eppugy A Epyy =
=a=1{ ALy ={Cps1 A Lyop+1) Which again implies d, = dj and d, 41 = djpy;.

Thus, let « A &, #+ & hold in the sequel. Then obviously also & A &s,4q) F &
and even — according to the definition of the function f — it holds a < &;(,41).
Denoting B = £pp+1) A £,+1 We have obviously a < B and it remains to distinguish
two cases.

flp)  p=flp+1) p+1 flp) flpe1) ) p+1
]
a p
7 7 :
a
Fig. 3. Fig. 4.

If f(p + 1) = p then evidently & = B and if we denote y = &, A &j(,, it must
be y <« and y # « which can be shown in the following way: It holds a < ¢,
as well as y < £, and hence one of the possibilities @ ¥y « = 9, y § « must occur.
However, if it were a < ythen &, A s = & = pp41) A Epsq Whichis a contra-
diction with the definition of the function f (namely, with the requirement (ii)),
since f(p) < p = f(p + 1). The case y < a and y # a is illustrated by Fig. 3 (which
is a partial and sketchy representation of the graph of the sequence of strings) which
makes it easy to see that f*(p) = f(p) and f*(p + 1) = p = f(p + 1). Hence,
similarly as above, dj = d,as well as dy., = d,.;.

If finally f(p + 1) < p then the same argument as above leads to « < y or y < .
However, if it were y < « and y # « then it would hold &, A Eppe1y = @ Which is
again a contradiction with the definition of the function f. The last case a < y is
illustrated by Fig. 4 which shows easily that again f*(p) = f(p + 1)and f*(p + 1) =
=f(P)- Hence y = &) A &p = (raprny A Cprr as well as B = Eppuny A Epiy =
= { oy A {, and, consequently, d, = d, and d,.,; = d,4, which completes the
proof.

Problem 1. The nature of the above proof shows that the assertion of Lemma 1
is apparently a simple consequence of some identity in the sequential algebra, which
is an algebraic structure including a certain semilattice as well as a free semigroup
satisfying at least the following axioms:

1. < is a partial ordering, i.e., it is a reflexive, antisymmetric and transitive
binary relation with the least element &;
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2. 1 is a function associating with every string & a non-negative number I(£) so
that & < n implies I(¢) < I(n) and I(¢) = 0 <> & = ¢;

3. Ais a binary operation defined everywhere which is idempotent (i.e., & A £ = &),
commutative, associative and whose neutral element is ¢, i.e., e A E =& A & = g

4. the binary operation of concatenation is associative and e is its unit;

5. for any three strings &, { and # it holds either E A {FE AN or E AL =
=¢anoréAnFEAG

6. for any three strings &, and 5, E A { > & A nimplies { A n =& A n; and

7. for any three strings &, { and # it holds &({ A n) = & A &n but generally does
not hold & A {n = (£ A {) (¢ A n).

Lemma 2. If P* is a sequence of strings obtained from the sequence of strings P
by inserting a string, which is an initial segment of some string in P or is empty,
between two adjacent members or in front of the first or behind the last member
of the sequence P, then a(P*) = a(P).

Proof. According to Lemma 1 we may assume that P and P* are ordered in the
following way: The string whose initial segment was put into P to form P* is in the
first place both P and P* (or, if there are more such strings, any one of them); the
inserted string is in the second place in P* and, finally, the i-th string in P is the
(i + 1)-st string in P* for i = 2,3, ..., m. Hence it holds n, = n} and n; = n},,
fori = 2,3, ..., mso that the length of the sequence P is m while that of P*ism + 1.
In accordance with the above notation we may write d; = d} = 0, d3 = n}
and d; = d¥y, for i =2,3,..., m which ev1dent1y implies a(P) = (n, — d,) +

+ Z(n —d) = (nt—d})+ (n2 - d3) + Z(n — d}) = a(P*).
Lemmas 1 and 2 together imply

Theorem 3. If P* is a sequence of strings such that each its member is an initial
segment of a string of a finite sequence P, then a(P*) < a(P).

Moreover, Lemma 1 implies that the above algorithm associates with every finite
set of strings M over an alphabet X a number a(M) which is equal to the number a(P)
for an arbitrary ordering P of the set M.

4. ANOTHER METHOD OF EVALUATING NUMBER a(M)

If M is the set of strings over an alphabet X, denote by b(M) the number of all
(mutually different) elements from X which appear in the first places of strings
from M. Evidently

()] 0<bM)<|X| and B(M)=0<M =0 or M:{e}
holds.
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It is seen immediately that the number b(M) gives the number of (connected)
components of the forest of the set of strings M, i.e., of the forest of the language M.
Let again M = {&,, &, ..., &} Where £,e X®, I(§) =n,fori=1,2,...,m and

put k = max (n; — 1). Further, define
15ism

(3) M, ={& éeX® and ate M} forall aeX®
and

(4) let M denote the set of all proper (and nonempty) initial segments of strings

from M;
(5) c(M) = b(M) +x§(c(M,,) and ¢(0) =0;
© a(0) = M) + 350,

It follows immediately from (5) that

) (M) = b(M) + Z;rb(M,) + 2;(2b(M,,) +.o.+ Y x"b(Mxl,,zmxk)
XE€E. XYE. X1X2...XKE.
holds and since {M,;aeM} c {M;xeX}u{M,;xyeX*}u...u{M . 5
X1X5 ... X € X*}, it is evident that d(M) < c(M).
If, to the contrary, « € X" where 1 < h < k but a ¢ M, then M, = 0 and hence
b(M,) = 0 according to (2). This implies

Lemma 3. d(M) = ¢(M) for every set of strings M.

Theorem 4. d(M) = a(M) for every set of strings M.
Proof. Let M = {&;, &, ..., &,} be an arbitrary set of strings, n; = I(&;) for i =

=1,2,...,m and let us use mathematical induction with respect to n =) n, to
i=1
prove the theorem. For n = 1 it is obviously d(M) = a(M). Accepting the assumption

of induction for n — 1, we prove the same identity for n > 1. To this purpose, form
the set M* from M by omitting in the string &, = &hx its last symbol x so that,
denoting by asterisk the quantities concerning the set M*, it obviously holds n; = n}
and d; =d} for i=1,2,....,m — 1 and n,, = n} + 1, assuming without further
notice that the algorithm was applied to both sets M and M*, in the ordering men-
tioned above. Let us distinguish several cases.

a) If n,, > 1, i.e. &, + ¢, then &y € M*, m* = m and even b(M) = b(M*) since
the set of the first symbols in strings from M does not change when passing to M*.
The following two cases may occur:

al) d,, = dy; in this case we obtain immediately a(M) = a(M*) + 1 according
to (1) (since n,, = ny, + 1) and, on the other hand, d,, = dj, implies that £, is not an
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initial segment of a string ¢; for 1 < i < m (if it were, it would be d,, = n,, > ny,)
which means M = M* U {£)} while evidently b(M,. ) = 1 since &y is a proper
segment of only one string in M, namely, the string &,. Then we may write d(M) =
= b(M) + Z b(M,) = b(M*) + Z b(M}) + b(Mg., ) = d(M"‘) + 1. However, ac-

cording to the assumption of mductlon it is apparently Z ny =n — 1 and hence

d(M*) = a(M*) and the preceding two identities imply d(M) = a(M);

a2) d, = dy, + 1; in this case we obtain immediately a(M) = a(M*) according
to (1). On the other hand, it means that ¢, is an initial segment of a string &; with
1 < i < m so that & e M* and hence M = M* which again implies according to
(6) that d(M) = d(M*). Making use of the assumption of induction d(M*) = a(M*)
(as in the previous case) we obtain d(M) = a(M);

b)If n,=1,ie. & =¢ m*+1=m, ny =0and M* v {{,} = M, then we
shall again distinguish two cases:

bl) d,, = 0; this means that £,, is not an initial segment of a string &;, 1 £ i < m;
therefore b(M) = b(M*) + 1 while M = M* so that d(M) = d(M*) + 1 according

m—1

to (6) On the other hand, (1) yields immediately that a(M) = Z(ni - d) +
= Z(n, df) + 1 = a(M*) + 1. The assumption of induction d(M“) = a(M*)
i=1

1mp11es now d(M) = a(M);

b2) d,, = 1; this means that £, is an initial segment of a string &; with 1 < i < m;
consequently, b(M) = b(M*) as well as M = M*. According to (6) we obtain d(M) =
= d(M*); on the other hand, (1) implies a(M) = a(M*) which together with the
assumption of induction gives again d(M) = a(M) which completes the proof.

Another proof of Theorem 4. Denote by R? the set of all mutually different initial
segments of the length g of strings from M and R = R' U R U ... U R* (number k
was introduced in the introductory part of Chap. 4). Obviously |R'| = b(M) and

k+1

|R"+‘| = Z b(M,) for w = 1,2, ..., k. Hence a(M) =Z|Rf| = b(M) +
+Z Zb(M) = b(M) + Zb(M) If ae R — M, then b(M) = 0 and hence

Jj=1 aeRJ

a(M) = b(M) + T b(M,) = d(M).

Example 1 (continued). Determine d(P) for the sequence of strings from Example
1 according to the rule (6). Evidently b(P) =2 and P = {1, 0, 10, 01, 100, 101,
011, 1001, 0110, 0111} so that we find successively P; = {0011, 010}, Py =
= {1101, 1110}, P, = {011,10}, Py = {101,110}, P,go = {11}, Pjo; = {0},
Poys = {01, 10}, Pygos = {1}, Poy10 = {1} and finally Pyy,, = {0}. According
0 (6) d(P) = b(P) + b(P,) + b(Po) + B(Pro) + (Pos) + B(Proo) + b(Prar) +
+ b(Po11) + B(P1go1) + b(Posso) + B(Possy) =2+ 1+1+2+1+1+1+
+2+14+14+1=14.
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