

Werk

Label: Table of literature references

Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097 | log85

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

of U_{n-1} . As T is a tree, any vertex of U_n is joined by an edge exactly with one vertex of U_{n-1} . Thus if $v \in U_{n-1}$, then let V(v) be the set of vertices of U_n joined with v. We have $V(v) \wedge V(w) = \emptyset$ for $v \neq w$, $v \in U_{n-1}$, $w \in U_{n-1}$. The cardinality of V(v) is at most \aleph_{α} . We can well-order the set V(v) so that the corresponding ordinal number is at most ω_{α} . Thus we have a transfinite sequence $\{w_i\}_{i < \beta}$ where $\beta \leq \omega_{\alpha}$, of all elements of V(v). Let the matrix assigned to v be $\|m_{ix}\|$; as $v \in U_{n-1}$, we assume that $m_{ix} = 0$ for i > n - 1. To any vertex w_{μ} of this sequence we assign the matrix $\|m'_{ix}\| \in \mathfrak{M}_0(\omega_{\alpha}, \omega_0)$ such that $m'_{n\mu} = 1$, $m'_{nx} = 0$ for $\kappa \neq \mu$, $m'_{ix} = m_{ix}$ for $i \neq n$.

The matrix assigned to a vertex of U_n for n>0 has some 1 in the n-th row and only zeroes in the further rows; thus no matrix can be assigned to two vertices of different sets U_n . We shall prove by induction according to n that for any two different vertices of U_n the corresponding matrices are different. The set U_0 contains only one vertex, thus it fulfills this assertion trivially. In a set U_n for some n>0 any vertex belongs to exactly one V(v) for $v \in U_{n-1}$. The matrix assigned to a vertex of V(v) has the first n-1 rows equal to these rows in the matrix assigned to v. If $v \in U_{n-1}$, $w \in U_{n-1}$, $v \neq w$, the matrices (according to the induction assumption) assigned to v and v are different; they differ in some element of the first v 1 rows (because the following rows consist only of zeroes). Thus if we take a vertex of V(v) and a vertex of V(w), the assigned matrices to these vertices must differ, too. Finally, if we have two different vertices of the same V(v), the assigned matrices differ in the v-th row. We have proved that the assigning matrices of v-th vertices of v-th v

Further we see that for any pair of vertices joined by an edge the assigned matrices differ exactly in one element.

Now if $u \in U$ and M is the matrix assigned to u, we put

$$v(u) = \Phi(M)$$
.

Thus v(u) is some transfinite sequence of the ordinal ω_{α} and if u, v are two vertices of T joined by an edge, then v(u) and v(v) differ exactly in one element. If we identify any vertex u of T with the vertex of $Q(\aleph_{\alpha})$ corresponding to the sequence v(u), we have embedded T into $Q(\aleph_{\alpha})$, q.e.d.

It is easy to prove that the cardinality of the vertex set of $Q(\aleph_{\alpha})$ for any infinite cardinal number \aleph_{α} is equal to \aleph_{α} . Thus no graph whose vertex set has the cardinality \aleph_{α} can be embedded into $Q(\aleph_{\beta})$, where $\aleph_{\beta} < \aleph_{\alpha}$.

References

Author's address: Liberec, Studentská 5 (Vysoká škola strojní a textilní).

 ^[1] I. Havel and P. Liebl: O vnoření dichotomického stromu do krychle. Čas. pěst. mat. 97 (1972), 201-205.

^[2] W. Sierpiński: Cardinal and Ordinal Numbers. Warszawa 1958.