

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097 | log82

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIFORM EXTENSION OF LINEAR FUNCTIONALS

VÁCLAV ZIZLER, Praha

(Received November 26, 1970)

We work in real Banach spaces. If X is a Banach space, x_n , $x \in X$, then $x_n \to x$ or $x_n \xrightarrow{w} x$ means the norm of the weak convergence of the sequence $\{x_n\}$ to x, respectively. Similarly $f_n \xrightarrow{w^*} f$ for the pointwise convergence in X^* (the dual of X). For r > 0, $K_r = \{x \in X; \|x\| \le r\}$, $S_r = \{x \in X; \|x\| = r\}$. Analogously K_r^* , S_r^* in X^* . The reals will be denoted by R, the positive integers by N. For a closed linear subspace P of a Banach space X, X/P denotes the quotient space and the codimension of P (codim P) is the dimension of $X/P(\dim X/P)$. For a linear subspace $P \subset X$, P^{\perp} is the annihilator (or polar) of P at X^* . For a linear subspace $P \subset X$, $f \in X^*$, $\|f\|_P = \sup_{K_1 \cap P} |f(x)|$. For $M \subset X$, \overline{M} means the norm closure of M in X. If K is a convex subset of X, ext K denotes the set of all extreme points of K. For a topological space S, C(S) denotes the Banach space of all real valued continuous bounded functions on S with the supremum norm. By $\langle x, y \rangle$ we mean the closed line segment with the end points $x, y \in X$.

Definition 1. Let X be a real Banach space, $P \subset X$ a linear subspace of X. We call X uniformly rotund (weakly uniformly rotund) along P if the following implication is valid:

if $x_n, y_n \in S_1$, $x_n - y_n \in P$, $||x_n + y_n|| \to 2$, then $x_n - y_n \to 0$ $(x_n - y_n \xrightarrow{w} 0)$. Similarly for the case of X^* and the weak * uniform rotundity along $P \subset X^*$.

Lemma 1. If $P \subset X$ is a linear subspace of a real Banach space X, then the following properties are equivalent:

- (i) X is uniformly rotund (weakly uniformly rotund) along P.
- (ii) If x_n , $y_n \in S_1$, $\inf_{t \in \langle 0,1 \rangle} ||tx_n + (1-t)y_n|| \to 1$, $x_n y_n \in P$, then $x_n y_n \to 0$ $(x_n y_n \xrightarrow{w} 0)$.

```
(iii) If x_n, y_n \in K, \left\| \frac{1}{2} (x_n + y_n) \right\| \to 1, x_n - y_n \in P, then x_n - y_n \to 0 (x_n - y_n \xrightarrow{w} 0).

(iv) If x_n, y_n \in X, \{x_n\} bounded, x_n - y_n \in P, 2(\|x_n\|^2 + \|y_n\|^2) - \|x_n + y_n\|^2 \to 0, then x_n \to y_n \to 0 (x_n - y_n \xrightarrow{w} 0).
```

Proof. It involves only some computations and is quite similar to that in [6].

Proposition 1. Suppose $P \subset X$ is a finite dimensional subspace of a Banach space X. Then X is uniformly rotund along P iff X is uniformly rotund along each one dimensional subspace of P.

Proof. One part of the equivalence is evident. Suppose X is not uniformly rotund along P. Then by (iv) of Lemma 1 there exist $\{x_n\}$ bounded, $y_n \in X$, $x_n - y_n \in P$, $2(\|x_n\|^2 + \|y_n\|^2) - \|x_n + y_n\|^2 \to 0$, $\|x_n - y_n\| \ge \varepsilon > 0$ for some $\varepsilon > 0$. Suppose without a loss of generality $w_n = x_n - y_n \to w \in P$, $w \ne 0$, for $\{y_n\}$ is also bounded (see for example [6]), and $2(\|y_n\|^2 + \|y_n + w\|^2) - \|2y_n + w\|^2 = 2(\|y_n\|^2 + \|y_n + w_n\|^2) - \|2y_n + w_n\|^2 + 2(\|y_n + w\|^2 - \|y_n + w_n\|^2) + \|2y_n + w_n\|^2 - \|2y_n + w\|^2$. However, $\|y_n + w\|^2 - \|y_n + w_n\|^2 = \|(\|y_n + w\| - \|y_n + w_n\|)$. $\|x_n + w\| + \|y_n + w_n\| \le \|w_n - w\|$. $\|x_n + w\| + \|y_n + w\| + \|y_n + w_n\| \le \|w_n - w\|$. $\|x_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n + w\|^2 - \|2y_n + w\|^2$. Therefore $\|x_n\|^2 + \|y_n\|^2 +$

Proposition 2. Suppose $P \subset X$ is a linear subspace of a Banach space X. Then X is (weakly) uniformly rotund along P iff X is (weakly) uniformly rotund along \overline{P} .

Proof. One part of the equivalence is evident. Suppose X is not weakly uniformly rotund along \overline{P} . Then there exists $\{x_n\} \subset X$, $\{x_n\}$ bounded, $f \in S_1^* \subset X^*$, $w_n \in \overline{P}$, $|f(w_n)| \geq \varepsilon$ for some $\varepsilon > 0$ such that $2(\|x_n\|^2 + \|x_n + w_n\|^2) - \|2x_n + w_n\|^2 \to 0$. We may choose for $n \in \mathbb{N}$, $\hat{w}_n \in P$ such that $\|w_n - \hat{w}_n\| \leq 1/n$ and therefore $w_n - \hat{w}_n \to 0$. Then again $\{w_n\}$ is bounded and $2(\|x_n\|^2 + \|x_n + \hat{w}_n\|^2) - \|2x_n + \hat{w}_n\|^2 = 2(\|x_n\|^2 + \|x_n + w_n\|^2) - \|2x_n + w_n\|^2 + 2(\|x_n + \hat{w}_n\|^2 - \|x_n + w_n\|^2) + \|2x_n + w_n\|^2 - \|2x_n + \hat{w}_n\|^2 - \|x_n + \hat{w}_n\|^2 - \|x_n + \hat{w}_n\|^2 - \|x_n + \hat{w}_n\| + \|x_n + w_n\|)(\|x_n + \hat{w}_n\| - \|x_n + w_n\|)$. The first term on the right hand side of the last equality is bounded. The second one is not greater than $\|w_n - \hat{w}_n\|$, which converges to zero. Furthermore, $f(\hat{w}_n - w_n) \to 0$. Thus for $n \geq n_0$ we would have $|f(\hat{w}_n)| \geq 2 \varepsilon/2 > 0$. The other parts of the statement are derived similarly.

In the following, $\varrho(x, y)$ will denote ||x - y|| in X, and for $M \subset X$, $\varrho(x, M) = \inf_{y \in M} \varrho(x, y)$.

Definition 2. A linear subspace P of a Banach space X is said to be a uniformly Haar subspace (a weakly uniformly Haar subspace) if the following implication is

valid: if $\{x_n\}$ is bounded in X, $\{y_n\} \subset P$, $\{z_n\} \subset P$, $\varrho(x_n, P) - \varrho(x_n, y_n) \to 0$, $\varrho(x_n, P) - \varrho(x_n, z_n) \to 0$, then $y_n - z_n \to 0$ $(y_n - z_n \xrightarrow{w} 0)$. Similarly for $P \subset X^*$ and the w^* -topology.

Remarks. Evidently, these conditions are not weaker than the Haar (i.e. Chebyshev) property of the closed P in a reflexive space X, and coincide with it if P is a subspace of a finite dimensional space X. If X is a uniformly rotund (= uniformly convex) space, then it is uniformly rotund along each subspace. Moreover, the space $C\langle 0, 1\rangle$ with the equivalent norm $\sqrt{\left(\|x\|_{C\langle 0, 1\rangle}^2 + \|x\|_{L_2\langle 0, 1\rangle}^2\right)}$ provides ([6]) an example of a space uniformly rotund in each direction which is nevertheless not even weakly uniformly rotund in the sense of V. Šmuljan ([5]), (i.e. whenever $\|x_n\| = \|y_n\| = 1$, $\|x_n + y_n\| \to 2$, then $x_n - y_n \stackrel{w}{\to} 0$). It is also elementary to construct in three dimensions an example of a space which is not uniformly rotund exactly in one direction.

Proposition 3. Suppose P is a linear subspace of a Banach space X. If X is uniformly rotund (weakly uniformly rotund) along P, then P is a uniformly Haar (a weakly uniformly Haar) subspace of X.

Proof. It reduces only to some easy considerations which may be found in [6, Prop. 9].

Remark. If dim $P \ge 2$, then it is very easy to construct a Haar proper subspace along which the space is not uniformly rotund.

Definition 3. Suppose $P \subset X$ is a closed linear subspace of a Banach space X. We say P has the uniform extension property (the weakly* uniform extension property) if the following implication is valid: whenever $f_n \in X^*$, $g_n \in X^*$, $f_n - g_n \in P^{\perp}$, $||f_n||_{P} \to 1$, $||f_n||_{P} \to 1$, $||g_n||_{P} \to 1$, then $f_n - g_n \to 0$ ($f_n - g_n \xrightarrow{w^*} 0$).

Remark. It is evident that the condition in Definition 3 is equivalent to the following one: if $f_n \in X^*$, $g_n \in X^*$, $f_n - g_n \in P^{\perp}$, $||f_n||_P = 1$, $||f_n|| \to 1$, $||g_n|| \to 1$, then $f_n - g_n \to 0$ $(f_n - g_n \xrightarrow{w^*} 0)$.

Proposition 4. Suppose $P \subset X$ is a closed linear subspace of a Banach space X. Then P has the uniform extension property (the weakly* uniformly extension property) iff P^{\perp} has the uniform Haar property (the weakly* uniform Haar property).

Proof. Suppose P^{\perp} does not have weakly* uniformly Haar property.

Then there exists $\{f_n\} \subset X^*$, $\{f_n\}$ bounded, $\{h_n\} \subset P^\perp$, $\{g_n\} \subset P^\perp$ and $x \in S_1 \subset X$ such that $\varrho(f_n, P^\perp) - \varrho(f_n, h_n) \to 0$, $\varrho(f_n, P^\perp) - \varrho(f_n, g_n) \to 0$, $|(h_n - g_n)(x)| \ge \ge \varepsilon > 0$. As it was pointed out in [4], for every $f \in X^*$ and each subspace $Y \subset X$, $\varrho(f, Y^\perp) = ||f||_Y$. If $||f_{n_k}|| \to 0$ for some subsequence n_k , then it would follow from

our assumptions $h_{n_k} - g_{n_k} \to 0$ which contradicts our assumptions. Therefore we may suppose without any loss of generality $||f_n||_P \to a \neq 0$. Denote $F_n = f_n - h_n$, $G_n = f_n - g_n$, $n \in \mathbb{N}$. Then $||F_n|| \to a$, $||G_n|| \to a$, $||F_n||_P = ||G_n||_P = ||f_n||_P \to a$. $F_n - G_n = g_n - h_n \in P^{\perp}$, $|(F_n - G_n)(x)| = |(h_n - g_n)(x)| \ge \varepsilon > 0$. Therefore P does not have the weakly* uniform extension property.

On the other hand, suppose P does not have the weakly* uniform extension property. Then there exist F_n , $G_n \in X^*$, $F_n - G_n = h_n \in P^\perp$, $x \in S_1 \subset X$, $|(F_n - G_n)(x)| \ge \ge \varepsilon > 0$, $||F_n|| \to 1$, $||G_n|| \to 1$, $||F_n||_P \to 1$. Then $\varrho(F_n, P^\perp) = ||F_n||_P \to 1$, $\varrho(G_n, P^\perp) = ||G_n||_P \to 1$, $\{F_n\}$ is bounded. Therefore we have $\varrho(F_n, P^\perp) - \varrho(F_n, 0) \to 0$, $\varrho(F_n, P^\perp) - \varrho(F_n, h_n) \to 0$, $\{F_n\}$ bounded, $|h_n(x)| \ge \varepsilon > 0$. Thus P^\perp would not have the weakly* uniform Haar property.

Proposition 5. If $P \subset X$ is a one dimensional subspace of a Banach space X, then P has the uniform extension property (the weakly* uniform extension property) iff the norm of X is Fréchet (Gâteaux) differentiable at z where $P \cap S_1 = \{z, -z\}$.

Proof. By ŠMULJAN's theorem ([5]) the last two properties are equivalent to the following properties respectively: whenever $f_n \in S_1^*$, $g_n \in S_1^*$, $f_n(z) \to 1$, $g_n(z) \to 1$, then $f_n - g_n \to 0$ ($f_n - g_n \overset{w^*}{\to} 0$). Take $f_n' = f_n/f_n(z)$, $g_n' = g_n/g_n(z)$. Then $f_n' = g_n'$ on P and $\|f_n'\| \to 1$, $\|g_n'\| \to 1$, $\|f_n'\|_P = 1$. Therefore if P has for example the uniform extension property, we have $f_n' - g_n' \to 0$ whenever $f_n(z) \to 1$, $g_n(z) \to 1$, $\|f_n\| = \|g_n\| = 1$. On the other hand, if the norm of X is Fréchet differentiable at $z \in S_1 \cap P$ where P is generated by z, and if we suppose $f_n = g_n$ on P and $\|f_n\|_P \to 1$, $\|f_n\| \to 1$, $\|g_n\| \to 1$, then $|f_n(z)| = \|f_n\|_P \to 1$. Therefore (sign $f_n(z)$). $f_n(z) \to 1$, (sign $f_n(z)$). $g_n(z) \to 1$. Denote $f_n' = (\text{sign } f_n(z)) \cdot f_n$, $g_n' = (\text{sign } f_n(z)) \cdot g_n$. Then f_n' , $g_n' \in X^*$, $f_n'(z) = g_n'(z) \to 1$, $\|f_n'\| \to 1$, $\|g_n'\| \to 1$. Denote $f_n'' = f_n'/\|f_n'\|$, $g_n'' = g_n'/\|g_n'\|$. Then we have $f_n''(z) \to 1$, $g_n''(z) \to 1$, $\|f_n''\| = \|g_n''\| = 1$. Therefore by Fréchet differentiability of the norm of X we have $f_n'' = g_n'' \to 0$. Thus

$$||f_n - g_n|| = || ||f_n|| \cdot f_n'' - ||g_n|| \cdot g_n''|| \to 0.$$

Hence P has the uniform extension property.

Corollary 1. If $x \in S_1 \subset X$, then the norm of X is Gâteaux (Fréchet) differentiable at x iff P^{\perp} is a weakly* uniformly Haar (a uniformly Haar) subspace of X^* , where P is a one dimensional subspace of X generated by x.

Now, we are going to investigate the dual property to that of the uniform rotundity along subspaces.

Proposition 6. Suppose $P \subset X$ is a finite dimensional subspace of a Banach space X. Then if P^{\perp} has the Haar property (i.e. P^{\perp} is a Čebyšev subspace of X^*), then P^{\perp} has the weakly* uniform Haar property.

Proof. If P^{\perp} does not have the weakly* uniform Haar property then P does not have the weakly* uniform extension property, by Proposition 4. It means there exist $f_n \in X^*$, $g_n \in X^*$, $f_n = g_n$ on P, $||f_n||_P \to 1$, $||f_n|| \to 1$, $||g_n|| \to 1$ and $|(f_n - g_n)(x)| \ge \varepsilon > 0$ for some $x \in S_1 \subset X$. Take subnets f_{n_v}, g_{n_v} of f_n and g_n respectively such that $f_{n_v} \stackrel{w^*}{\to} f_0 \in K_1^*$, $g_{n_v} \stackrel{w^*}{\to} g_0 \in K_1^*$. Then the restrictions f_{n_v}/P and g_{n_v}/P have the property that $\sup_{x \in S_1 \cap P} |(f_{n_v} - f_0)(x)| \to 0$ and analogously for g_{n_v} and g_0 . Thus because of $||f_n||_P \to 1$, $||f_0||_P = 1$, $||\min ||f_{n_v}|| \ge ||f_0|| \ge ||f_0||_P$, $||\min ||f_{n_v}|| = 1$ (for $||f_n|| \to 1$), we have $||f_0|| = 1$. Analogously for g_0 . Since $|(f_{n_v} - g_{n_v})(x)| \ge \varepsilon > 0$, we have $f_0 \ne g_0$. Therefore P does not have the unique extension property and thus P^{\perp} does not have the Haar property ([4]).

Proposition 7. If $P \subset X$ is a linear subspace of a Banach space X then X is uniformly rotund along P (weakly uniformly rotund along P) iff the following conditions are satisfied respectively: whenever $\{x_n\}$ is a bounded sequence in X, $\{P_n\}$ a sequence of one dimensional subspaces of P, y_n , $z_n \in P_n$ for $n \in N$ and $\varrho(x_n, P_n) - \varrho(x_n, y_n) \to 0$, $\varrho(x_n, P_n) - \varrho(x_n, z_n) \to 0$ then $y_n - z_n \to 0$ ($y_n - z_n \xrightarrow{w} 0$).

Proof. Suppose P does not have the property of our assertion in the weak sense. Then there exist a bounded sequence $\{x_n\}$, one dimensional subspaces $P_n \subset P$ and $y_n, z_n \in P_n$ such that $\varrho(x_n, P_n) - \varrho(x_n, y_n) \to 0$, $\varrho(x_n, P_n) - \varrho(x_n, z_n) \to 0$, but $|f(y_n - z_n)| \ge \varepsilon > 0$ for some $f \in S_1^* \subset X^*$ and $\varepsilon > 0$. If for some subsequence n_k , $\varrho(x_{n_k}, P_{n_k}) \to 0$, then our assumptions imply $\varrho(y_{n_k}, z_{n_k}) \to 0$, a contradiction. Therefore since $\varrho(x_n, P_n) \le \|x_n\|$, we may suppose $\varrho(x_n, P_n) \to k \neq 0$. Denote $s_n = x_n - y_n$, $t_n = x_n - z_n$. Then $\|s_n\| \to k$, $\|t_n\| \to k$, would not be weakly uniformly rotund along P for we have simultaneously $\|s_n\| \to k$, $\|t_n\| \to k$, $\|t_n\| \to k$, $\|t_n\| \to k$.

On the other hand, suppose X is not weakly uniformly rotund along P. Then there exist $\{x_n\}$, $\{y_n\} \subset S_1 \subset X$, $x_n - y_n \in P$ such that $\inf_{t \in (0,1)} \|tx_n + (1-t)y_n\| = 1 - \varepsilon_n \to 1$ and $|f(x_n - y_n)| \ge \varepsilon > 0$ for some $f \in S_1^* \subset X^*$ and $\varepsilon > 0$. Consider $y_n = \frac{1}{2}(x_n + y_n) - x_n$, $q_n = \frac{1}{2}(x_n + y_n) - y_n$, $r_n = \frac{1}{2}(x_n + y_n)$, P_n the one dimensional subspace of P generated by $x_n - y_n$, $n \in N$. Then $\|r_n - p_n\| = \|x_n\| = \|y_n\| = \|r_n - q_n\| = 1$, and $\varrho(r_n, P_n) \le \|r_n\| \le 1$. For a fixed $n \in N$ take an arbitrary element $z \in P_n$. Then there exists $\alpha_n \in R$ such that $z = \alpha_n p_n + (1 - \alpha_n) q_n$. Then $z - r_n = -(\alpha_n x_n + (1 - \alpha_n) y_n)$. It is evident that if $\alpha_n \notin (0, 1)$, then $\|\alpha_n x_n + (1 - \alpha_n) y_n\| \ge 1$ and for $\alpha_n \in (0, 1)$, $\|\alpha_n x_n + (1 - \alpha_n) y_n\| \ge 1 - \varepsilon_n$. Therefore for each $z \in P_n$, $\|z - r_n\| \ge 1 - \varepsilon_n \to 1$. Thus $1 \ge \varrho(r_n, P_n) \ge 1 - \varepsilon_n$. Hence we have obtained $\varrho(r_n, p_n) - \varrho(r_n, P_n) \to 0$, $\varrho(r_n, q_n) - \varrho(r_n, P_n) \to 0$, $p_n, q_n \in P_n$, $|f(p_n - q_n)| \ge \varepsilon > 0$, $|r_n\| \le 1$. Therefore then X would not satisfy the conditions of our Proposition in the weak sense.

Proposition 8. Let $P \subset X$ be a closed linear subspace of a Banach space X. Then X^* is uniformly rotund along P^\perp (weakly* uniformly rotund along P^\perp) iff the following conditions are satisfied respectively: if f_n , $g_n \in X^*$, $X \supset P_n \supset P$, P_n closed, codim $P_n = 1$, $h_n = f_n - g_n \in P_n^\perp$ for $n \in N$ are such that $||f_n|| \to 1$, $||g_n|| \to 1$, $||f_n||_{P_n} \to 1$, then $f_n - g_n \to 0$ ($f_n - g_n \overset{w^*}{\to} 0$).

Proof. Suppose P does not have the property of our assertion for the weak* case. Then there exist f_n , $g_n \in X^*$, P_n^{\perp} one dimensional subspaces of P^{\perp} such that $\|f_n\| \to 1$, $\|g_n\| \to 1$, $h_n = f_n - g_n \in P_n^{\perp}$, $\|f_n\|_{P_n} \to 1$, and such that $\|(f_n - g_n)(x)\| \ge \varepsilon > 0$ for some $x \in S_1 \subset X$ and $\varepsilon > 0$. Then again $\varrho(f_n, P_n^{\perp}) = \|f_n\|_{P_n} \to 1$, $\varrho(g_n, P_n^{\perp}) = \|g_n\|_{P_n} \to 1$. Thus $\varrho(f_n, P_n^{\perp}) - \varrho(f_n, 0) \to 0$, $\varrho(f_n, P_n^{\perp}) - \varrho(f_n, h_n) \to 0$, $\{f_n\}$ bounded and $|h_n(x)| \ge \varepsilon > 0$. Therefore by Proposition 7, X^* is not weakly* uniformly rotund along P^{\perp} .

On the other hand, if X^* is not weakly* uniformly rotund along P^{\perp} , by Proposition 7 there exist $\{f_n\} \subset X^*$, $\{f_n\}$ bounded, one dimensional subspaces P_n^{\perp} of P^{\perp} and g_n , $h_n \in P_n^{\perp}$ such that $\varrho(f_n, P_n^{\perp}) - \varrho(f_n, g_n) \to 0$, $\varrho(f_n, P_n^{\perp}) - \varrho(f_n, h_n) \to 0$ and $|(g_n - h_n)(x)| \ge \varepsilon > 0$ for some $x \in S_1 \subset X$ and $\varepsilon > 0$. Suppose again without any loss of generality $\varrho(f_n, P_n^{\perp}) \to k \neq 0$ ($\varrho(f_n, P_n^{\perp}) \le \|f_n\|$). Then denoting $F_n = f_n - g_n$, $G_n = f_n - h_n$, we have $\|F_n\| \to k \|G_n\| \to k$, $\|F_n\|_{P_n} = \|G_n\|_{P_n} = \|f_n\|_{P_n} = \varrho(f_n, P_n^{\perp}) \to k$, $|(F_n - G_n)(x)| = |(g_n - h_n)(x)| \ge \varepsilon > 0$. Therefore the conditions of our statement are not satisfied, since we have simultaneously $P_n \to P$ (we take P_n closed).

Proposition 9. A Banach space X has a uniformly Fréchet (uniformly Gâteaux) differentiable norm iff the following conditions are satisfied respectively: whenever P_n are one dimensional subspaces of X and f_n , $g_n \in X^*$ such that $||f_n|| \to 1$, $||g_n|| \to 1$, $f_n - g_n \in P_n^{\perp}$, $||f_n||_{P_n} \to 1$, then $f_n - g_n \to 0$ $(f_n - g_n \overset{w^*}{\to} 0)$.

Proof. The property of X to have a uniformly Gâteaux differentiable norm is, by Šmuljan's theorem ([5]), equivalent to the following: whenever $f_n, g_n \in S_1^*$, $z_n \in S_1$ such that $f_n(z_n) \to 1$, $g_n(z_n) \to 1$, then $f_n - g_n \stackrel{w^*}{\to} 0$ in X^* . Suppose now the property of our assertion is satisfied. Take $f_n, g_n \in S_1^*$, $z_n \in S_1$ such that $f_n(z_n) \to 1$, $g_n(z_n) \to 1$. For $n \in N$ denote P_n the one dimensional subspace of X generated by z_n . Then $1 \ge \|f_n\|_{P_n} \ge f_n(z_n) \to 1$, $1 \ge \|g_n\|_{P_n} \ge g_n(z_n) \to 1$; denoting $f_n' = f_n/f_n(z_n)$, $g_n' = g_n/g_n(z_n)$, we have $f_n' - g_n' \in P_n^\perp$ and $\|f_n'\| \to 1$, $\|g_n'\| \to 1$, $\|f_n'\|_{P_n} \to 1$. Therefore by our property $f_n' - g_n' \stackrel{w^*}{\to} 0$ and thus $f_n - g_n \stackrel{w^*}{\to} 0$.

On the other hand, let X has a uniformly Gâteaux differentiable norm. Suppose $f_n, g_n \in X^*$, P_n one dimensional subspaces of X, $||f_n|| \to 1$, $||g_n|| \to 1$, $f_n - g_n \in P_n^{\perp}$, $||f_n||_{P_n} \to 1$. For $n \in N$ take $P_n \ni z_n \in S_1$ such that $f_n(z_n) = ||f_n||_{P_n}$. Then evidently $g_n(z_n) = ||g_n||_{P_n}$. Take $f'_n = f_n/||f_n||$, $g'_n = g_n/||g_n||$. Then $||f'_n|| = ||g'_n|| = 1$, $f'_n(z_n) = ||f_n||_{P_n}/||f_n||$, $g'_n(z_n) = ||g_n||_{P_n}/||g_n||$. Furthermore, $||f_n||_{P_n}/||f_n|| \to 1$ since $||f_n||_{P_n} \to 1$