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1. INTRODUCTION

1,1. Denote by I the closed interval [—1, 1]. Let « > —1, > —1 and let u(x)
be a real function integrable and bounded on I. (The integrals in this paper are
those of Lebesgue.)

Put
(1,1a) Jx)=(1-x)*(1+xf
and
(1,1b) 0(x) = J(x) ™.
Letforn=0,1,2,...
(1,10) 0,(x) = ¥ afxr*
with o
(1,1d) ad’ >0

be the orthonoimal polynomial associated with the function Q(x) on the interval I,
ie.

(L,1¢) '[ 0.(5) 0.0 () dx = 3.

Here y
m+n=6,,=0, 6,,=1.

The function Q(x) is called the weight of the polynomials Q,(x).

By a well-known theorem there exists for every n one and only one polynomial
Q,(x) satisfying (1,1¢) and (1,1d). (See [5] p. 66.)
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1,2. Let
(1,2a) J(x) =Y b{Px**
k=0

where b > 0 be the orthonormal polynomial associated with the function J(x)
defined by (1,1a) on the interval I.

J,(x) is a special case of the polynomial Q,(x) for u(x) = 0. J,(x) is the normalized
Jacobi’s polynomial. (See [1] p. 42.)

Therefore the polynomials Q,(x) represent a generalization of the Jacobi’s poly-
nomials.

1,3. This paper is the first part of a treatise dealing with the above defined genera-
lized Jacobi’s polynomials Q,(x).

The main object of this paper is to establish the differential equation (4,2b) for
a certain class of the polynomials Q,(x). This equation is a very useful tool for solving
many problems connected with the polynomials in question.

J. Korous has derived a differential equation for a more general class of poly-
nomials. His equation, however, is non-homogeneous. (See [2], [3], [4].)

For a class of the polynomials Q,(x) we derive the inequality (2,9b) which is an
extension of the well-known inequality for Jacobi’s polynomials.

We shall also establish a relation between Q,(x) and Q;(x). (See Section 3,4.)

2. SOME PROPERTIES OF THE POLYNOMIALS Q,(x)

2,1. Throughout this paper the following notation is used:
1. n = Ois an integer.
2. {P} is the degree of the polynomial P(x).
{P} = —o0, if P(x)=0,
P(x) = m, if {P} <n.
3. I'is the closed interval [ -1, 1].
4. ¢;(i=1,2, ...) are positive constants independent of x € I and of n.

ci(x) (i = 1,2,...) is a function of x € I and n such that |¢,(x)| < ¢,

The numbering of ¢; a ¢,(x) is independent for every section.

2,2. If P(x) = Y a;x*, a, + 0, then by a well-known theorem
k=0

(223) PG) = 3 5 0,
where
(2,2b) = I P() 0469 003 dx.
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(See [5] p. 73.)

Hence
(2,2¢) n>r= IP(x) 0,(x) Q(x)dx =0
I
and ‘
(2,2d) J P(x) 0.(x) 0(x) dx = 2=,
I af,')
where aJ’ > 0 is defined by (1,1c).
2,3. Let
agn—l)
(2,3a) gdo=0, n>0=>gq,= ok
By (2,2d) forn > 0
(2.3b) 4= j x 0u(x) Qu-s(¥) Q(¥) dx
I
and
(2,3¢) ng, ' = f 01(x) Qn-1(x) O(x) dx .
I
Henceforn=1,2,...
(2,3d) 0<gqg,<1.

Proof. From (2,3b) we see at once
4 < f 10.(x) @u-1(x)] () dx = g2 < J' 03(x) O(x) dx J' 07 (x) Q(x) dx = 1.
I I I

2,4. The equation

(2,4a) dn+1 Qni1(X) + (Jo — %) Qu(x) + g, Qp—4(x) =0,
where
(2,4b) Jn= _[ o 0:(x) Q(x) dx = || < 1

is the well-known recurrence formula for orthonormal polynomials. (See [5] p. 77.)

2,5. Forx +t
(2,52) Qu(x, 1) =k:20Qk(x) Qi) =
= (¥ = )7 gus1[@u+1(*) u(t) = Qu(x) Qus1(9)] -
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Similarly for the polynomials J,(x) defined by (1,2a)

(2:55) 9 1) = 3 ) () = (= = 07 aealIaes(®) 92) = 2,69 Juns(01],

holds where x # t and
. bg”
(2,50) ’ dn+1 = bg'—"'l) .
(2,5a) is the Christoffel’s formula. (See [5] p. 79.)
Applying (2,2b) we can write the formula (2,2a) in the form

(2,5) P() = [ P() 0.x, 1) 0 at
(2,5¢) P() = [ P() Ji(x, 1) 3 dt .

2,6. We introduce the following sets of functions:

Let f,(t) be a real function of ¢ which depends on the parameter x € I and is defined
for all te[—1, 1] with the possible exception t = x. The functions f,(t) exist for
every value of x € I. Put

(2,6a) y = min (a, ).

§, denotes the set of the functions f,(t) such that fory = —4

(2,6b) flt)e § ‘[ (1 = 22|70 dt = ey().
Here

2,60) J (1 = )72 |£,()| dt = lim f " (1= )12 (£ 3| dt +
I y2x— J -1

+ lim fl(l — )12 |f (1) dt.

y=x+

The integrals in (2,6¢) are those of Lebesgue.

If y < —14, then f,(t) € §, if and only if there exists a constant ¢ > 0 independent
of x e I and t € I such that

(2,6d) , 1.0 <c.
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The inequality (2,6d) implies
(269 fim [£,(0)] < ¢
—=x
for every x e I.

Remark. It is easily seen that ¢(t) € §, for y = —4, if [, (1 — #)7'2 |o(1)| dt <
< + oo for we may write f,(t) = ¢(t) for every x e I.

Similarly ¢(f) € §, for y < —1, if ¢(¢) is bounded on I.
Clearly, if y; < —% and y, = —1, then §,, < §,,.

2,7. Let ¢(t) be a real function defined on I. Then we shall use the following nota-
tion

(27a) 8eo(i) = (x = 0 [o(x) — 9(0)].
It is easily seen that A,¢(f) € §, = ¢(1) € §,.
2,8. In the notation of Sections 1,2 and 2,1,
(2,8a) y =min(a, B) = —1=Y((1 — x?) J*(x)) Ju(x) = es(x).

Proof. See e.g. [2] p. 9. In this paper (2,8a) is proved for y > } but a slight modi-
fication of the proof establishes (2,8a) also for y = —1.

2,9. Let in the notation of Sections 2,7 and 2,6

(2,9a) Y2 —% and Au(t)eg,.
Then
(2,90) V(1 = x?) Q*(x)) Qufx) = ei(x) -

{

Proof. We shall use a method of J. Korous. (See [2] p. 9.) Applying (2,5¢) we
deduce that

(1) Qn(x) =a,/J n(x)-+ Rn(x)v'
Here

e J‘ 0.() J.(1) J(1) dt..

Hence

@ o < J.Ie_““) 02(1) 0(1) dtLJ,f(t) J)dt < e, .
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Since
J,,_l(x, t) =T -1
with respect to ¢,

€) |
Ry(x) = 'f 0u(1) Ju_s(x, ©) J(6) dt = f 0t) Ju—r(x, ) [J(t) — e~ 0(1)] dt .
Applying (2,5b) we obtain for the integrated function L,(t, x) in the second integral
in (3)
4 LWt %) < ar| @] [x = o]t |1 — exp [u(t) - u(x)]] -
» * {lJn(x) Jn- l(t)l + |J,,_1(x) Jn(t)l} J(t) .

It is easily seen that

%) [t — exp [u(t) — u(x)]| < cz|x — ¢] Au(t) .
Let
© s = sup (1 - ) () [0.69)

and x, €I a point in which the above function assumes the value s.
Further let 6 > 0 and

(7) Io=(xo_6, xo+5)nI.

Since u(x) is bounded in I (see Section 1,1) A, u(f) is bounded on the interval I — I,.
Making use of (4), (5), (2,8a) and (2,3d) we deduce that

® YO )| Il <[ 1001 1nns0] 4
+I(0) I() de<es [ J' 02(1)e* 0(s) dt]m {f [72_.4(6)+ J(5] J() dt}m < 2.

Further, (3), (4), (5), (2,8a), (2,9a) and (2,6b) yield
) :/((1 - x(z’) 'Iz(xo)) J‘Ioan(t’ xo)l dt < Cesj‘lo(l — )12 |A,u(t)| dt < %

if we choose & in (7) sufficiently small.
It follows from (8) and (9) that
s
(10) V(X = x5) (o)) [Ra(xo)] < c7 + -
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(1), (2), (10) and (2,8a) yield
s = (1 = x3) I(x0)) | 2a(xo)| = {lan] |Ja(x0)| '+
+ [Ru(x0)[} V(1 = x3) J*(x0)) < €5 + %
Hence
(11) s < co.
Asforxel

0(x) = €*® J(x) < €40 J(x),
(2,9b) follows from (11). ' '

3. LEMMAS

3,1. We shall use the following notation:
If (p(t) is integrable on I, then form = 0,1,...,n = 0,1, ...

(3.1a) L [o(0)] = j o(i) 0u(t) 0.(1) Q) .

Remark. ¢ on the left-hand side of (3,1a) indicates that the integration variable is .

3,2. Let in the notation of Section 2,6

(3,2a) ft)e 8y -
Then for m < n
(3:2b) Lna[f(0)] = ex(x) -

Remark 1. The integral (3,2b) is meant in the sense of (2,6¢).

Remark 2. If ¢(f) does not depend on x we put
f, x(‘) = ‘P(t) ’

so that

(3,20) lIm,n[(o(t)]I <c
provided that ¢(t) € §,.

Proof. 1. If y = —4, we may apply (2,9b). It is for te (-1, 1)
|2n(1) @u(f) Q)] < ca(1 — 2)71/2
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so that

N 7 10) B cajr(l ) )] di < e,

in virtue of (2,6b).
2. If y < —14, we have by (2,6d) and (2,62)

a7 < s [l 0.0] € a1 <
< ¢ U Q2(1) O(¢) dt J‘ Q%(?) 0(1) dt]l/2= C6 -
.3,3. Let y(t) be integrable in I. We put

(3,3%) Ao ¥) = g J’ (1) 0u(H) Cu-i(x, 1) O(1) i,

where Q,_(x, t) is defined by (2,5a).
Further put
(3,3b) MO =1, L) =t, A(t)=1-1,
0 = 2D 00 (1=1,2.3).

Let
(3,3¢) Ap(t) € §, -
Then fori =1,2,3
(3,3d) A(x, ¥3) = {a(x) + L [2(1) Aco()]} Qui(x) +
. + {BA%) = Lnam1[241) Ac0()]} Q1) -
(3,3¢) ay(x) = By(x) = Ba(x) = 0,

%(x) = o(x), a(x) = —(x +jn) @(x), Bi(x) = gu0(x),
where j, is defined by (2,4b).

Further 4
(3,3f) A(x, ¥)) = ¢4(x) Qp- (%) + c5(x) Qu(x) .

Proof. 1. The existence of the integrals on the right-hand side of (3,3d) is made
evident by (3,2b). Further, (3,3d) and (3,2b) verify (3,3f) provided that (3,3z) is true.
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2. Since
0,-1(x, t) = m,_, with respect to the variable ¢ we have for

() =1, ¥ = o) — o(x), V(1) =x—1

the equations <

(1) Alx,¥) =0, Alx, ¢) = A(x ¥*)
and in virtue of (2,5a), .
@) Al ) = = Qu-i().

3. As a consequence of (2,5a), (1) yields
() AW = AR ) = La[A0(0] Qu-1(%) = Lna-1[Ac0(1)] Q(x) -

4. Since
Va(t) = ¥2(x) + (£ — x) o(x) + to(t) — o(x)]
we deduce from (1) and (2) that (3,3¢) holds also for i = 2.
5. Tt can be easily seen that

) ¥s(t) = ¥s(x) + (1 = ) [0(t) — o(x)] + (x* = *) o(x).
Hence, if we put ¢,(¢) = t, ¢,(f) = x + t then owing to (1),

A(x, 3) = I, J[A3(1) Aco()] Q- i(x) —
- In.n—l[}%(t) Ax(P(t)] Qn(x) + [In.n—l[‘Pl(t)] Qn(x) - In.n[(PZ(t)] Qu—l(x)] (p(x).

From this equation (3,3¢) follows for i = 3 by applying (2,3b) and (2,4b).
34. Let

(3,4a) Au'(t)e §, and éa— [Aw'(D)]eS,.
x

Forv=0,1,...,n

(3,4b) P = —In.v[AS(t) ul(t)] 2

where A5(t) is defined by (3,3b).

(3:4¢) [L+e@)] =14+ o+ B+ 1+ (o + x)u'(x) -
= La[45(t) A0 (9)]}

where j, is defined by (2,4b).

(3:4d) dy(x) = 3[1 + e(x)] {x —ju— @n) ' [(@ + B+ 2)ju +

+a— B+ 7, —2q2 w(x) + 29, I, .- 1[A:() A (D]} -
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Then
(3.4¢) 'qn Qp-1(%) = (2n) 71 [1 + e,(x)] (1 — x?) Qi(x) + d,(x) Qu(*) ,

(3.4f) e(x) = n"1¢(x),
(3.48) dy(x) = cx(x),
(3,4h) e(x) = n"1cy(x).

Proof. 1. The existence of integrals on the right-hand sides of (3,4b), (3,4c) and
(3,4d) as well as the existence of

1) A (9]

is a consequence of (3,4a) and (3,2b). Since by (3,4a) u"(x) € §,, ex(x) exists in the
interval L.

(3,4f), (3,4g) and (3,4h) follow then from (3,2b).
2. It is easily seen that

Un(x) = (1 = x*) Qy(x) + nx Q\(x) = =, .

Hence by (2,2a)

(1 Ux) = £, 0.

where by (2,2b)

@ = [ [0~ ) ) + m o] 0 o) &
Integrating by parts we obtain

©) 0= - j (1= ) 0.) 0i0) € 3t + T [va(9],
where

Yat)=@—-B)+@+B+2+nt—(1-1)u(r).
3. (3) enables us to establish the following results:
) | v<n-l=a=y,
where y, is defined by (3,4b).

Adding (2) to (3) for v = n we obtain
() =3+ B+ 2n+2)js+a—p+n].
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Since
x2 Q:l—l(x) = (n - l)x Qn—l(x) + Moy s
(3) yields

(6) Gy =(2n+a+ B+ 1) gy + Yoy -

4. By means of (2,5d) we obtain
() (1= %) Q) = tes Gocs(3) + (50 = %) 0,(5) — @[ A
(3,4¢) is a consequence of (7), (5), (6) and (3,3d).

3,5. Provided that (3,4a) holds,

(3,50) L(l — %22 Q3(x) Q(x) dx | < egn?.

Proof. (3,5a) is a consequence of (3,4¢).
3,6. The following equation holds:

(3,60) K, =g, J‘ (x + 1) Q1) Q- 1(f) QL) dt = mx + 5.

Here s is the sum of the zeros of the polynomial Q,(x). Since all these zeros are
contained in the interval (—1, 1), it is

(3,6b) _ [sP] < n.
Proof. 1.
(1) x* 0)(x) = nx[a{’x" + a{"x""1] —

= aPx" + 1,y = nx[Q(x) + 7] +
+ Sg_")[agl)xn + n"_l] = nx Q,,(x) + 7, -1 +
+ $P[00) + Tyes] = [nx + 0] () + 7oy

2. Making use of (2,4a) and (1) we deduce that
K, = j (¢ + 1) QIO [(£ = 1) 1) = duss Qural] Q(0) dt =
— e+ [ (#8100 - 020} 00 0 0 -
= n(x + j,) + sV — nj, = nx + 5.
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3,7. Let
(3.72) | Au(t)eg,.
Then

376) L= J' (1 = £2) A (1) Q1) uor(t) O(1) dt = m c1()

Proof. 1. Let y = —4. Then in virtue of (3,4e), (3,4f) and (3,4g),
(1 = %) Q)] < canll@uos(¥)] + QAT
Hence by (2,9b)
(1) (1 = x%) [2x)]| V[Q(®)] < eon(l — x?) 714,

From (3,2b) and (1) it follows that
I s j (1= )7 fa (9] e < ean.
2. Lety < —}%. Then in virtue of (3,5a) and of (2,6d),
e <es[ [ 1 - 27 020 00 [ 020 09 4] "< un.
3,8. Let
(3,8) Aw(i)es, and (1- 1) a% Aw()es,.
For the sake of brevity, put
(3.80) oi() = 1) [( — ) A () Q9] =
== A S Aw(@) = [+ B+ Dt +a—f+ (- ) ud] Aw).
Then in the notation (3,7b)
(3.86) B(x) = j}(l — ) (1) Q1) Ques(rv 1) Q) dt = (1 — x?) w(x) Qi) —
— {n () + Ho (0]} 40 Ques(®) + {[nx + SPTw/(3) - L} 0(x)

Here s is defined in Section 3,6.
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Proof. 1. As a consequence of (3,8a) there exists u’(x) in the interval I

Therefore u'(x) is continuous on I and consequently

1 w(t)Au'()e g, .
By (1) combined with (3,2b) the existence of I, ,[¢4(t)] is made evident.
2. Clearly

(2 1=)u(t)=(1—x*)u(x) + (x* — ) u'(x) +
+ (1= )[u() - uw(x)].
Making use of (2,5a), (3,6a) and (3,7b) we may write
B(x) = (1 — x*) u'(x) Qi) + [K,w'(x) — L] @ulx) —
— gp Qn—1(x) J.z[t w'(x) — (1 — 1) A’ (1)] Qu(1) Qu(t) O(r) dt .

Integrating by parts, we deduce that the last integral is equal to

(3) nx u'(x) + 31, [e,()] .
(3) and (3,6a) complete the proof.

4. THE DIFFERENTIAL EQUATION OF THE POLYNOMIAL Q,(x)

4,1. 1. If Aw'(t) e §, and u’(x) exists in the interval [—1, 1], then
(4,1a) Au*(t)e §,.
2. If (0]ox) [Aw'(t)] € §, and u"(x) exists in the interval [—1, 1], then
(4,1b) Z [Aw(i] < .
Proof. 1. Clearly
Au(t) = [w(n) + w(x)] A () € §,

as u’(t) is continuous on I in virtue of the existence of u"(x).

2. It is easily seen that

(1) % [Au?(t)] = u"(x) Aa'(t) + [w(1) + v'(x)] 56; [Aw(1)] -
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There exists £ between x and ¢ such that
+ Au'(t) = u'(§).

In virtue of the existence of u”(x), the function u”(x) is continuous on I and
consequently

(2 [Au'(f)] < ey =>Au(t)e§,.
From (1) and (2) it follows that (4,1b) is true.
4,2. Let
(4,32) (1 = ) Au(D), (1 - 2) %A,u’(t) and Au(t)

be elements of §,.
Then

426) 0 '(x) % [(1 = x?) @1(x) ()] + (1 = x) by(x) QUx) +

[ + a,6)] 0.x) = 0.

Here

(4,2¢) Ay =[n(n + a2+ g+ 1)],
(4,2d) a,(x) = ncy(x),
'(4,2¢) by(x) = n71 ¢y(x) .

If (4,2a) is true and, moreover, the functions
2 0 n( 2 62 ’ 0 ’
@2) (- Z[Aw(O], (-7 [Aw ()], ZAu()
0x Ox ot 0x

are elements of §,, then b,(x) exists in the interval [—1, 1] and
(4.2¢) bi(x) = n™" es(x).

Proof. 1. It is easily seen that

- d ’ ’ ’

D,(x) = 07'(x) - [(1 = x*) Qa(x) Q)] = (1 = x*) w'(x) Qufx) + A3 Qo) = 7oy -

By (2,2a)

[0 D) =T 5, 05).
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Making use of (2,2b) and integrating by parts we obtain
B, + I (1 = x?) u(x) Qx) Q,(x) O(x) dx =
I

- j}(l — x?) 0i(x) Q!(x) O(x) dx = jlan(x) af(1 - ) QYx) Q)] =
- f (1= )W) 05) 016 09 ax.

Hence

@ b= | (1= #) () 03() ) d [g%] =

-2 j (1= ) () 0169 0.) ) dx - j 0.9 0.6 el(1 — ) ') 03]
For the sake of brevity, put
o) = QKO 11 - ) () 2] =

=1 -)[u()+u*0O)] —[(e+B+2)t+a— plu(r).

From (1), (2), (2,5d), (3,3a) and (3,8c¢) it follows that
3 | D,(x) = — q,A(x, ¥o) — 2 B(x).

2. For the sake of brevity, put
@) 0 = (1 - £ AL + w0 - [+ B+ 21 + (o — A AL()
and let ¢,(f) be defined by (3,8b).

Making use of (3,3d) and (3,8c) we obtain from (3)
(5) D,(x) = —2(1 — x?) u'(x) 0(x) + 2n u'(x)gy Qp—4(x) +

+ 4, 01(%) Qu-1(x) + 02(x) Qu(x) .

Here

(6) eix) = (x +Jn) [W'(x) + u(x)] + (@ + B + 2)w'(x) + L [os(t) — a(1)]
and

(1) ex(x) = =g [w'(x) + w?(x)] — 2[nx + sP] w'(x) + g Iy n-1[02()] + 2L,,
where s{" is defined in Section 3,6 and L, by (3,7a).
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The existence of the integrals in (6) and (7) is guaranteed by (4,2a) combined with
(4,1a).

3. Replacing g, Q,_(x) by the right-hand side of (3,4¢) we may write (5) in the
form ‘

(®8) Dy(x) = =(1 = **) [u(x) + bi(x)] Qi(x) — ax(x) Qu(x) -

Here
©) i) = = o= [1 + e ei(9) — ex) /()
and
(10) a,(x) = —0a(x) — [2nuw'(x) + 04(x)] du(X) -

4. (4,2d) and (4,2¢) may be derived from (6), (7), (8), (9) and (10) by employing
(3,4f) and (3,4g).

If (4,2f) is true, then (4,1b) holds and b,(x) exists. (4,2g) is then deduced similarly
as (4,2¢) if we take (3,4h) into consideration.

4,3. Sufficient conditions for (4,2a) and (4,2f).

L Lety> —4.
1. (4,2a) holds, if there exists € > 0 such that

(4,32) xel, tel=|u"(x) — u"(t)] < cifx — 1.
2. (4,2f) holds, if
(4,3b) xel, tel=|u"(x) — u"(f)| < ca]x — °.
IL If y < —34, the assertion is true if we put in (4,3a) and (4,3b) & = 1.

Proof. I. 1. Let (4,3a) be satisfied. Then u”(x) is continuous on the interval I
and consequently :

(1) |Au'(8)] < sup [u"(x)] = Au'(t) € G, .

Further :
1

() |A" ()] < ealx — o] 7= I (1 = )2 }|Au"(r)| dt <
-1

; %c,;[(x + 1 + (1 - x)] < csv.
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There exists T between the numbers x and ¢ such that

g;Axu’(t) _ (- x)u"(t) — [w(t) — w'(x)] = (t — %)~ [w'(t) - w(2)] .

(t—x)?
By (4,3a)
‘a%Axu’(t) <cglt—x|"t|t—1f <t —x|71*
Hence
3) J‘ (1= ey %Axu’(t) dt < cs.

(1), (2) and (3) show that Au'(z), (1 — t*) A,u"(t) and (1 — t?) (0/0r) Au'(t) are
elements of §,

2. Let (4,3b) be satisfied. Then there exists &; (i = 1, 2, ...) between x and ¢ such
that

%[A,u’(t)] - (x — ) u"(x) — [w'(x) — u'(1)] _ %“”’(f;) .

(x— 1)
Hence
a ’ l m
4) — Aa'(1)| £ = sup |u"(x)|.
ax 2 xel
Further
© 2 (a2
0x x —t
< Cglx Sl tl—l ‘x - 62‘2 < Clolx - t|_1+e
and
62 u’”(64) _ u’”(és)
6 Au'(t)]| =|———>| <
( ) ‘6x ot [ ()] x—t

< C11|x - tl_l I£4 - £3ls < clz|x - t|_1+t .

From (4), (5) and (6) we may derive that
D aw@), (1= aw@) and (1 - 2)-2— auw(s)
0x ox Jx 0Ot
are elements of §,.
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