

Werk

Label: Table of literature references

Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097|log76

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Theorem 16. Let Q be a quasigroup. Then the following conditions are equivalent:

- (i) Q is an SA or TA-quasigroup and Q is totally symmetric.
- (ii) There are a symmetric distributive quasigroup D and an Abelian group G whose every element has order 2, such that $Q \cong D \times G$.

Proof. (i) implies (ii). First we shall prove that e is an endomorphism of Q. Since Q is symmetric,

$$L_a = R_a$$
, $L_a^2 = 1$, $S_{a,b} = L_b L_a L_{ab}$, $e(a) = aa$

for all $a, b \in Q$. The mapping $S_{a,b}$ is an automorphism and hence $S_{a,b}(ab) = S_{a,b}(a)$. $S_{a,b}(b)$. But

$$S_{a,b}(a) = b(a(ab \cdot a)) = a$$
, $S_{a,b}(b) = b(a(ab \cdot b)) = b \cdot aa$.

Thus $b(a(ab \cdot ab)) = a(b \cdot aa)$. From this we get $ab \cdot ab = a(b(a(b \cdot aa))) = L_a L_b L_a L_b(aa) = V_{b,a}(aa)$. By Theorem 10, Q is an A-quasigroup. Therefore $V_{b,a}$ is an automorphism and $ab \cdot ab = V_{b,a}(a) \cdot V_{b,a}(a)$. However, $V_{b,a}(a) = a(b(a \cdot ba)) = a \cdot bb = a \cdot e(b)$. Thus we have

$$ab \cdot ab = e(ab) = (a \cdot e(b))(a \cdot e(b)) = e(a \cdot e(b)).$$

But $(a \cdot e(b))(e(a) \cdot e(b)) = (a \cdot e(a))e(b) = a \cdot e(b)$ (Theorem 1). Hence $e(a \cdot e(b)) = e(a) \cdot e(b)$ and hence, $e(ab) = e(a) \cdot e(b)$. Now Theorem 4 may be used and we get an isomorphism $Q \cong D \times G$, D being a distributive quasigroup and G an A-loop. But both D and G are totally symmetric. Let f be the unit of G. We have f and f are a large f for all f and f are totally symmetric. Let f be the unit of f and f are totally symmetric. Let f be the unit of f and f are totally symmetric. Let f be the unit of f and f are totally symmetric. Let f be the unit of f and f are totally symmetric. Let f be the unit of f are totally symmetric. Let f be the unit of f are totally symmetric. But every f are totally symmetric f are totally symmetric. By Theorem 7, f is diassociative. But every di-associative symmetric A-loop is an Abelian group (see [3]). (ii) implies (i). This part is obvious.

Bibliography

- [1] R. H. Bruck and L. J. Paige, Loops whose inner mappings are automorphisms, Ann. of Math., 63, 308-323, 1956.
- [2] В. Д. Белоусов, Основы теории квазигрупп и луп, Москва 1967.
- [3] M. Osborn, A theorem on A-loop, Proc. Amer. Math. Soc., 9, 347-349, 1958.

Author's address: Praha 8 - Karlín, Sokolovská 83 (Matematicko-fyzikální fakulta KU).