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Let Q be a quasigroup. We shall denote by R, the right translation by x € Q and
by L, the left translation. For all a, b, ¢ € Q there exists just one element d dependent
on a, b, ¢ such that ab.c = a . bd. Hence we may introduce a mapping S, , for
all a, b € Q which has the following property:

(ab)c = a(b. S, (c)) forevery ceQ.

It is evident that S, , = L; 'L, 'L,,. Similarly we define mappings T, , = R; 'R, 'R,
Vip = Ry 'L;'RyLyy X,p = Ry L; 'Ry, Yoy = L;'Ry 'Ly, Z, = R;'L,. Thus we
have for all a, b, ce Q,

c(ab) = (T,4(c).a). b, (ac).b=a.(V,,(c)).b), ab=2Z,b).a.

It is easy to show that the mappings defined above are inner mappings in every loop,
moreover, these mappings generate the inner mapping group. Since inner mappings
of every group are automorphisms, it is of interest to consider a class of loops or
quasigroups whose mappings S, 4, Ty Vaps Xaps Yapr Za (or some of them only)
are automorphisms. The theory of such loops was developed by Bruck and PAIGE
in [1] (they called these loops A-loops). Further, in his book ([2]) V. D. BELousov
introduced the class of all quasigroups in which S, , are automorphisms. We shall
call such quasigroups SA-quasigroups. Similarly we define TA-quasigroups, etc.
A quasigroup will be called an STA-quasigroup if it is simultaneously an SA and
TA-quasigroup and, finally, a quasigroup will be called an A-quasigroup if it is SA,
TA, XA, YA, VA and ZA-quasigroup. In this paper we shall mainly investigate STA-
quasigroups. In the first section we shall prove some structure theorems for STA-
quasigroups. In the second section we shall generalize some theorems from [1] and
in the third we shall apply the results to some classes of quasigroups.

First we shall make several arrangements concerning our notation. Let Q be
a quasigroup. G(Q) will be the group generated by all L,, R,. For x e Q we shall
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denote by the symbol I(x) the group of all « € G(Q) such that a(x) = x. Id Q will be
the set of all idempotents in Q and Aut Q will be the automorphism group of Q. For
every x €  there exist uniquely determined elements e(x), f(x) such that x . e(x) =
= f(x) . x = x. By e and f we shall denote the corresponding mappings. .

Lemma 1. Let Q be an SA-quasigroup. Then:

(i) L, Aut Q for all x € Q.
(ii) 1d Q@ = ¢(Q), e(Q) < f(Q).
(ii) Id Q is a left distributive subquasigroup in Q.

Proof. Since Q is an SA-quasigroup, S, .)€ Aut Q for every x € Q. However,
St.e) = LegyLs 'Ly ey = Loy Hence L,y € Aut Q. Therefore, e(x) . (e(x) . e(x)) =
= (e(x) . e(x)) (e(x) . e(x)), and hence e(x)eId Q. Thus &(Q) = Id Q and ¢(Q) =
< £(2)-

Now it remains to prove (iii). Let x, yeId Q. By (i) and (ii), L,, L,€ Aut Q.
But S, , € Aut Q. Hence L,, € Aut Q, and hence xy € Id Q. Let further x, xy € Id Q
and y € Q. The mappings L,, L,,, L, ‘L;IL,‘, are automorphisms. Hence L, is an
automorphism, that is, y € Id Q. Similarly if xy, yeId Q and x € Q then x € Id Q.

We have proved that Id Q is a subquasigroup of Q. The left distributive law for Id Q
follows from (i) and (ii).

Lemma 2. Let Q be a TA-quasigroup. Then:

(i) Ryxy € Aut Q for all xe Q.
(ii) 1d @ = f(Q), f(Q) = «(Q).
(iii) Id Q is a right distributive subquasigroup in Q.

The proof is dual to that of Lemma 1.

Corollary. Let Q be an idempotent quasigroup. Then Q is an SA-quasigroup
(TA-quasigroup) if and only if Q is left (right) distributive.

Theorem 1. Let Q be an STA-quasigroup. Then:

(i) Loy Rexy € Aut Q and e(x) = f(x) for all xe 0.
(ii) 1d @ = ¢(Q) = f(Q).

(i) Id Q is a distributive subquasigroup in Q.
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Proof. In view of Lemmas 1,2 we have only to prove that e(x) = f(x) for all
x € Q. The element e(x) is idempotent, hence f(e(x)) = e(x). By Lemma 2, R, €
€ Aut Q. Thus o i

f(x). x = x.e(x) = (f(x) . x). e(x) = (f(x) . e(x)) (x . e(x)) = (f(x) - e(x)) . x .
Therefore f(x) = f(x) . e(x). But f(x) = f(x).f(x). Hence e(x) = f(x) and the

proof of Theorem 1 is complete.

Lemma 3. Let Q be an SA-quasigroup and a € I1d Q be arbitrary. By Q, denote
the set of all x € Q such that ax = x. Then Q, is a subquasigroup in Q; moreover,
Q, is a left loop and o is its left unit. Further, if B, y € 1d Q then there is an auto-
morphism ¢ of Q such that ¢(Qp) = Q, and ¢(f) = 7.

Proof. First, Q, is a subquasigroup in Q. Let x, ye Q,. By Lemma 1, x.xy =
= ax .oy = xy. Hence xy e Q,. Let u,ve Q be such that xu = vx = y. We can
write xu = y = oy = ax .oau = x . au. Therefore u = au, u € Q,. Similarly v e Q,.
It is obvious that Q, is a left loop having « as a left unit. Let 8, y € Id Q be arbitrary.
There is 6 € Id Q such that 6 . f = y. If x € Qg then

y.0x =06f.0x =0d.Px = 0x.

Hence dx € Q,. Agdin, let be y € Q,. There exists u € Q such that éu = y. We can
write
ou=y=yy=08.0u=6.pu.

Thus u = Bu, u € Q. Therefore Ly(Q;) = Q,. But L; is an automorphism of Q.
Now we can put L; = ¢.

Lemma 4. Let Q be a TA-quasigroup and « € 1d Q be arbitrary. By Q* denote the
set of all x € Q such that xa = x. Then Q* is a subquasigroup of Q; moreover,
Q% is a right loop and o is its right unit. Further, if B,y e€1d Q then there is an
automorphism ¢ of Q such that ¢(Qf) = Q" and ¢(B) = y.

The proof is dual to that of Lemma 3.

Theorem 2. Let Q be an STA-quasigroup and o« € Id Q be arbitrary. Then Q, =
= Q% is a subloop in Q and « is its unit. Further, if B,y €ld Q then there is an
automorphism ¢ of Q such that p(Qp) = Q, and ¢(B) = y.

- Proof. By Lemmas 3,4 and Theorem 1.

Theorem 3. Let Q be an STA-quasigroup. Then Id Q is a normal subquasigroup
in Q and Q[Id Q is an STA-loop. Furthermore, for every p€1d Q it is 0, = 014 Q.
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Proof. First we shall provethat a . 1d Q =Id Q.a foreveryae Q. Let e e1d Q
be arbitrary. There is f € Id Q such that B . e(a) = « (since e(a) e Id Q and Id Q is
a subquasigroup). We obtain '

Ba = P(a . e(a)) = (Ba)(B.e(a)) = Pa.a=y.axa,

where y = T,,'(B). Since Id Q is a characteristic subquasigroup in Q and T, , is an
automorphism, y € Id Q. There is 6 € Id Q such that §y = e(ax). Hence

ax = e(ax) . ax = 8y . ax = £(y . ax),
where ¢ = T 4(5), e € Id Q. Thus we have
ax =¢(y.ax) =¢.Pa = ¢a,

for some @ eld Q. Therefore a.Id Q = 1d Q. a. Similarly IdQ.a s a.Id Q,
and hence, a.Id Q = Id @ . a. Now we shall construct a homomorphism ¢ of Q
onto Q,, where u € Id Q is fixed but arbitrary. Let a € Q. Then there is an element 7(a)
in Id Q such that e(a) . ©(a) = p. Put o(a) = a . 7(a). We can write

(a.1(a).p = (a.(a)).(e(a).(a)) = (a.e(a)).(a) =a.(a).

Therefore a . t(a) € Q,. Sincea . 1d Q =1d Q . a, thereis o € Id Q such thata . t(a) =
= aa. Let b e Q be arbitrary. Then

(a.(a)).(b. (b)) = (2xa) (b. (b)) = B(a. bi(b)) =
= p(ab.y) =(ab.y)6 =ab .¢,

where B, 7, 3, e € Id Q are suitably chosen. Further we have

(ab.0) i = (@ (@) (5 BN = (a(a) . ) (55(8) . ) =
= (a.(a))(b.(b)) = ab.c¢.

(ab .¢€)(e(ab).€) = (ab.e(ab))e = ab .¢.

But

Hence p = e(ab) . ¢, that is, t(ab) = e. Therefore,
o(a) . o(b) = (a . (a)) (b . (b)) = ab.e = ab . t(ab) = o(ab).

Hence o is an endomorphism of Q. It is evident that for every x € Q, it is o(x) = x.
Hence ¢ is an epimorphism onto Q,. Let n be the normal congruence relation cor-
responding to ¢. Since e(«) = o for every a € Id Q, o(x) = p. Conversely, if o(x) = pt
for any x € Q then x.1(x) = p = e(x) . 7(x). Hence x = e(x), xeId Q. Thus Id Q
is one class of n. Therefore Id Q is a normal subquasigroup of Q. Further, Q, =
= Q/n = Q/Id Q and by Theorem 2, Q, is an STA-loop.
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Theorem 4. Let Q be an STA-quasigroup. Define a relation g as follows: For every
a,be Q, agb if and only if e(a) = e(b). Then the following conditions are equi-
valent:

(i) There are a distributive quasigroup D and an STA-loop K such that Q =
~ D x K.
(ii) The mapping e is an endomorphism of Q.
(iii) The relation ¢ is a normal congruence relation on Q.
(iv) The relation g is a congruence relation on Q.
(v) There is a € 1d Q such that Q, is a normal subquasigroup in Q.
(vi) For alla€1d Q, Q, is normal in Q.
(vii) For every aeld Q, itis Q =~ 1d Q x Q,.

Proof. (i) implies (ii). Without loss of generality we can assume that Q = D x K.
Since D is idempotent and K is a loop, the mappings e are their endomorphisms.
Hence it follows that e is an endomorphism of Q.

(ii) implies (iii). Evidently, ¢ is the corresponding equivalence relation to e.

(iii) implies (iv). This is obvious.

(iv) implies (ii). Let a, b € Q be arbitrary. We have e(a) = e(e(a)), hence a g e(a).
Since ¢ is a congruence, ab g e(a).e(b). From this, e(ab) = e(e(a). e(b)). But
e(a) . e(b) € Id Q, hence e(e(a) . e(b)) = e(a) . e(b). Thus e is an endomorphism.

(ii) implies (vii). Let pu € Id Q be fixed but arbitrary. By Theorem 3 (and its proof)
there is an epimorphism ¢ of Q onto Q, such that ¢(a) = a . 7(a), where e(a) . t(a) =
= p for all a € Q. Define ¢ of Q into Id Q@ x Q, as follows: ¢(a) = (e(a), o(a)) for
every a € Q. Since e and ¢ are homomorphisms, ¢ is a homomorphism. Let a, be Q
be such that ¢(a) = ¢(b). Then e(a) = e(b), a.1(a) = b.1(b). But e(a).1(a) =
= pu = ¢(b) . ©(b). Hence t(a) = 7(b) and a = b. Thus ¢ is one-to-one. Let c € Id Q
and x € Q, be arbitrary elements. There are feId Q, a € Q such that aff = u and
ap = x. Therefore

af=x=xp=af.af =aa.f.

Hence ao = a, ¢(a) = o. Finally, 7(a) = B and o(a) = x. Thus ¢(a) = («, x) and ¢
isonld @ x Q,.

(iii) implies (vi) by Theorem 2.

(v) implies (iii). Let 7 be a normal congruence relation such that Q, is one of its

classes. We shall prove that ¢ = n. But first we shall prove that xne(x) for every
x € Q. There are e Id Q, y € Q such that «f = e(x), yf = x. We can write

yB=x=x.e(x)=yB.e(x)=yB.afp =ya.p.
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Hence y = ya, y € Q,. Thus yno. Since = is a congruence, ypnapf. That is, xme(x).
Let now a, b € Q be such that a ¢ b. Then e(a) = e(b). But are(a), bre(b). Hence anb.
Let, conversely, anb. Then a.e(a) b .e(b). Since = is normal, e(a)me(b). Let
yeld Q be such that e(a).y = a. We have e(a).yne(b).y, which means that
ane(b) . y. Thus e(b) . y € Q,. But e(b) . y € Id Q. Hence o = e(b) . y and consequently,
e(a) = e(b). Therefore a g b.

(vii) implies (i). It is sufficient to put D = Id Q, K = Q, for some a € Id Q.

II

If M is a subset of a quasigroup Q, {M } will be the subquasigroup generated by M.
Further we shall say that M is commutative if ab = ba for all a, b € M and we shall
say that M is associative if a . bc = ab . ¢ for all a, b, ce M.

Theorem 5. Let Q be a ZA-quasigroup and M a commutative subset in Q. Then
{M} is a commutative subquasigroup in Q.

Proof. Let a € Q be arbitrary. P, will be the set of all b € Q such that ab = ba,
that is, Z,(b) = b. It is evident that P, is a subquasigroup in Q. Let a € M. Since
M < P, {M} < P,. Let be {M}. Then be P, for all ae M and hence M < P,.
Thus {M} < P,.

Theorem 6. Let Q be a ZA-quasigroup. Then Q is powercommutatwe If x,yeQ
then xy .x = X . yx.

Proof. Let x, ye Q. The set consisting of x only is commutative. Hence, by
Theorem 5, {x} is commutative. Further,

'L(yx) = ZJ(yx) = Z(y) - Z(x) = R 'L(y) . x = L(y).

Hence x . yx = xy . x.

Theorem 7. Let Q be an STA-quasigroup and M an associative subset in Q.
Then {M} is a group.

Proof. G(a, b) let be the set of all x € Q such that S, ,(x) = x; a, b e M fixed but
arbitrary. Since S, ; is an automorphism, G(a, b) is a subquasigroup. By hypothesis,
M < G(a, b). Hence {M} < G(a, b). Thus a.bx =ab.x for all xe{M}. From
this we get T;, (a) = a.

For every x € {M}, let H(b, x) denote the set of all y e Q such that T; (y) = -
Since M < H(b, x) and H(b, x) is a subquasigroup, {M} < H(b, x). Thus y . bx =
= yb.x for all x, ye {M} and .all be M. Hence M = N{M}, where N{M} is the
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middle nucleus of {M}. But, as it is well known, N{M} is a subgroup of {M}. Hence
{M} = N{M} and the proof is now complete.
Similar theorems can be proved for SVA and for TVA-quasigroups.

Theorem 8. Every A-quasigroup is power-associative.

Proof. By Theorems 6, 7.

Theorem 9. Let Q be an STA- and ZA-quasigroup. Then Q is an A-quasigroup.

Proof. First, Q is an X A-quasigroup. Let a, b € Q be arbitrary. The following
mappings are automorphisms:

x = L;lelLab’ B=Ry'L,, y= La-blRab'
Hence fay is an automorphism. However,
Bay = Rl:lLbL;lL;lLab :blRab = Rb-lLa—lRab =Xap -

Similarly, Q is a YA-quasigroup.
Finally, Q is a VA-quasigroup. Let a, b € Q. The mappings

o=Ry'L,'Ry, B=Ry'RR,, y=R;'L,
are automorphisms. Hence
afy = Ry 'Ly 'RyRa' RyRR; 'L, = Ry 'Ly 'Ry L, =V,

is an automorphism.

Theorem 10. Let Q be an SA or TA-quasigroup. If Q is commutative then Q is an
A-quasigroup.

Proof. Since Q is commutative, S,, = T, and Z, = 1. Now we can use
Theorem 9.

111

Let Q be a quasigroup. Q is called an SF-quasigroup (TF-quasigroup) if S,; =
= S, (Ty,o = T.,) in Q for all @, b, ce Q. In [2] it is proved that Q is an SF-quasi-
group if and only if a.bc = (ab) (e(a) . c) for every a, b, ce Q. Similarly, Q is
a TF-quasigroup if and only if bc.a = (b . f(a))(ca) for all a, b,ce Q. A quasi-
group Q is called an F-quasigroup if it is simultaneously an SF and TF-quasigroup.

Theorem 11. Let Q be an SF-quasigroup (TF-quasigroup). Then Q is an SA-
quasigroup (TA-quasigroup) if and only if e(x) e Id Q(f(x) eId Q) for all xe Q.
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Proof. Let Q be an SF-quasigroup. Let e(x) € Id Q for every x € Q. Hence
e(e(x)) = e(x), and hence, e(x) . ab = (e(x) . a) (e(e(x)) . b) = (e(x) . a) (e(x) . b) for
all a, be Q. Thus L, € Aut Q. Let y € Q be arbitrary. Since Q is an SF-quasigroup,
Sry = Sx.ex)- But

Syex) = L:(:I:)L; le.e(x) = :(i)
is an automorphism.

Theorem 12. Let Q be a quasigroup. Then the following conditions are equivalent:

(i) Q is an STA and SF-quasigroup.
(i) Q is an STA and TF-quasigroup.
(iii) Q is an F-quasigroup and e(x), f(x) € Id Q for all x € Q.
(iv) Q is an A and F-quasigroup.
(v) There are a distributive quasigroup D and a group G such that Q = D x G.

Proof. (i) implies (v). Q is an SF-quasigroup and hence a . bc = (ab) (e(a) c).
In particular ab = a . be(b) = (ab) (e(a) . e(b)). Thus e is an endomorphism of Q.
By Theorem 4, Q =~ D x G, where D is distributive and G is an STA-loop. But G
is evidently an SF-loop, hence a group.

(iii) Implies (i) and (ii). By Theorem 11.

(if) implies (v). Similar as for (i).

The other implications are evident.

A quasigroup Q is called Abelian, if ab.cd = ac. bd for every a, b,c,d e Q.
A quasigroup is called di-Abelian (tri-Abelian), if its every subquasigroup that is
generated by two (by three) elements is Abelian.

Theorem 13. Let Q be a quasigroup. Then the following conditions are equi-
valent:

(i) Q is a di-Abelian STA-quasigroup.
(ii) There are a distributive quasigroup D and a commutative Moufang loop G
such that Q = D x G.

Proof. (i) implies (ii). Since Q is di-Abelian, e is an endomorphism of Q. By
Theorem 4, Q =~ D x G where D is a distributive qusigroup and G is an STA-loop.

But G is di-Abelian. Hence G is a commutative di-associative STA-loop. Further-
more, by Theorem 10 G is an A-loop. However, Osborn ([3]) proved that every
commutative di-associative A-loop is a Moufang loop.

(i) implies (i). By Moufang’s Theorem, G is di-associative and hence di-Abelian.
Further, Belousov ([2]) proved that every distributive quasigroup is tri-Abelian.
From this we can deduce that D x G is di-Abelian. Since D is distributive and G
is a commutative Moufang loop, D % -G is an A-quasigroup.
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Theorem 14. Let Q be a quasigroup. Then the following conditions are equivalent:

(i) For allx e Q itis e(x), f(x) € Id Q, I(e(x)) = Aut Q, I(f(x)) < Aut Q.

(i) There are a distributive quasigroup D and an A-loop G such that Q =
~ D x G.

Proof. (i) implies (ii). Since e(x), f(x) €Id @, R, €I(e(x)) and L;, € I(f(x)).
Hence, by hypothesis, R, € Aut Q and Lg € Aut Q. Let a, be Q be arbitra-
ry. Then

(ab) e(a) = R,(ab) = (a. e(a)) (b . e(a)) = a(b . e(a)) ;

that is, R;z(a . (b . e(a)) = ab. Now put g = Ly 'L, 'L,, where ¢ = R{,(a . be(a)).
It is evident that 8 € I(e(a)). Hence f e Aut Q. But g = L, 'L;'L,, = S,,. Thus Q
is an SA-quasigroup. Similarly Q is a TA-quasigroup.

Let « € Id Q be arbitrary. We shall prove that Q, is normal in Q. To this purpose
it is sufficient to prove (as it is well known) that ¢(Q,) < Q, for all ¢ eI(x). Let
x € Q, and ¢ €I(«) arbitrary. Since ¢ € Aut Q and ¢(x) = «,

o(x) - 2 = o(x) . 9(2) = o(xx) = (x).

Hence ¢(x) € Q,. Now, using Theorem 4, we get Q =~ D x G; D a distributive quasi-
group and G an STA-loop. But every inner mapping of G is an automorphism and
hence G is an A-loop.

(ii) implies (i). This implication is an easy exercise.

Theorem 15. Let Q be a quasigroup. Then the following conditions are equivalent:

(i) For every x e Q it is I(x) <= Aut Q.
(ii) Q is a tri-Abelian STA-quasigroup.
(iii) There are a distributive quasigroup D and an Abelian group G such that
Q=D xG.

Proof. (i) implies (iii). Since L;(X) = Rex(X) = x, Ly(x) €I(x) and R, € I(x).
Hence Ly R.x € Aut Q, and hence e(x),f(x)eld Q. By Theorem 14, Q =
=~ D x G, D distributive and G a loop. Evidently G has the property that I(x) =
< Aut G for every x € G. Now we shall prove that any loop having this property is
an Abelian group. Let a,b,ceG. Put B = L;'L;'L, where d = R;'(a. bc).
Since Bel(c), B(j) = j,j being the unit of G. From this, a . bc = ab . c. Hence G
is a group. Further R;'L,eI(b), where g = R; '(ba). Therefore R;'L/(j) = j.
Hence ba = ab. Thus G is an Abelian group.

(i) implies (iii). Considering that every tri-Abelian loop is an Abelian group, we
can proceed by Theorem 13 and its proof.
(iii) implies (i) and (ii). This implication is evident.
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