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CASOPIS PRO PESTOVANI MATEMATIKY

Vyddvd Matematicky ustav CSAV, Praha
SVAZEK 97 * PRAHA 9.8.1972 # &[SLO 3

EINE BENUTZUNG DER ZAHLENZERLEGUNG ZUR BESTIMMUNG
DER ANZAHL UNISOMORPHER ZYKLEN IN (-TURNIEREN

MicHAL Buc¢ko, KoSice

(Eingegangen am 7. October 1970)

In der ganzen Arbeit verstehen wir unter einer Zahl eine natiirliche Zahl.

Bezeichnen wir p,(2n + 1, k) die Anzahl der Zerlegung der Zahl 2n + 1 in k
Zahlen, aus denen keine grosser als die Zahl n ist.

Weiter leiten wir die Formeln fiir die Anzahl der Zerlegungen p,(2n + 1, k) ab,
wenn k = 3, 4 ist.

Satz 1. Es sei p,(2n + 1,3) die Anzahl der Zerlegungen der Zahl 2n + 1 in 3
Zahlen, die nicht grésser als die Zahl n sind. Dann gilt

(1 MOESE [L‘”‘]

k=0 2

Beweis. Gestalten wir folgenderweise das Schema 1, in dem die Summe jeder
Spalte 2n + 1 ist:

nn ...n |n—-1n-1...n-1

nn—1...ry|n—-1n-2...1r o || 2us 1

12 son 83 | 3 4 cos Sy sow | wue Sp
Schema 1
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Dabei legen wir n 2 ry 25, n—12r, 25, hZr,2s, ri+s;,=n+1,
r,+ s, =n+2,...und

. %(2n + 1), wenn 2n + 1 = 0(mod 3) ist,

2[2": 1] , wenn 2n + 1 = 1 (mod 3) ist,

2[2"3+ 1] +1, wenn 2n + 1 = 2 (mod 3) ist,

2n + 1

, wenn 2n + 1 = 0(mod 3) ist,

[2n3+ 1] + 1, wenn 2n + 1 = 0 (mod 3) ist

legen.

Die Anzahl der Spalten im Schema 1 ist der Zahl p,(2n + 1, 3) gleich. Wir iiber-
zeugen uns leicht aus dem Schema 1, dass fiir eine beliebige Zahl n

% 1 2 5 ntl-3 [n ; 1]
p,,(2n+1,3)=["2 ]+["2 ]+["2 ]+...+ 5
gilt.
Damit ist der Beweis des Satzes 1 beendet.

Es ist ersichtlich, dass [a,] + ... + [a] < a; + ... + a; fiir beliebige Zahlen
a, ..., a; gilt. Darum ist:

p"(2n+1’3)§n~2|-1+n+,12—3.1+n+12—3.2+n+12—3.3+'

.

n+1—3.(n;1) 1 { ’
+ : =—(n+1)"_ tat—mlgpos g BT =
2 2 3 3
_1/n+3
6\ 2 /)
Wenn wir weiter iiberlegen, dass m — 1 g. [m] fiir jede Zahl m gilt und dass in

der Zahlenfolge n + 1, n — 2, n — 5, ... gerade und ungerade Zahlen sich gegen-
seitig abwechseln, dann bekommen wir die untere Grenze fiir p,(2n + 1, 3), wenn
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wir von é(" ; 3) die Zahl %(" ; L + 1) subtrahieren. Es gilt also

2) é(":z)gpn(zwlﬂ)éé(";’3)-

Satz 2. Es sei p,(2n + 1, 4) die Anzahl der Zerlegungen der Zahl 2n + 1 in 4
Zahlen, die nicht grésser als die Zahl n sind. Dann gilt

i=0 j=0 2
0<3i+jsn-2

() P+ 14 = ¥ ¥ [;-J]

Beweis. Gestalten wir das Schema 2, in dem die Summe der Elemente in jeder
Spalte 2n + 1 ist, folgenderweise:

n aiw I n—1...n—-1‘... . q

n—1...x|n—-1...x, cuie | e Xp

1 ey 1 2 cer YV Scc l one 10

1 com Zq 0 1 ves Zg z,
Schema 2

Wirlegendabein =2 x; 2y, 2z, 0~ 12X, 2y, 222, .42 X, 2 Y, 2 Zp,
X ity +zi=n+1, x,+y,+z,=n+2,..,9+x,+y,+z,=2n+ 1.
Wenn wir die Ergebnisse des Schemas 1 fiir die zweite, dritte und vierte Spalte

des Schemas 2 benutzen, bekommen wir

n—2
- . n—3.[ - ]
p,,(2n+l,4)=[§ +["———-]+...+ _ ==+

+["‘1]+["‘4'+...+ n_1_3'[n;3] +...+[£],

2 2 2

wobei d eine der Zahlen 2, 3, 4 ist. Damit ist der Satz 2 bewiesen.
Aus (2) und (3) folgt dass

VRV T
6\ 2 6\2 6\2
gp,,(2n+1,4)§1 B + 1 nt 1) e 14 ,
6 2 6 2 6\2
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ist, woraus wir nach einer Berechnung

o ) femena-)4

bekommen.

In der Tabelle 1 werden die Zahlen p,(2n + 1,3) und p,(2n + 1,4) fiir n =
=1, 2, ..., 10 angefiihrt.

Tab. 1
n 1 2 3 4 5 6 7 8 9 10
pa(2n + 1, 3) 1 1 2 3 4 5 7 8 10 12
p,(2n +1,4) 0 1 2 4 7 11 16 23 31 41

A. Ko1zIG behandelt in der Arbeit [1] die Zyklen in Turnieren und fiihrt eine
Definition spezieller Turniere an, woher wir die folgende Definition iibernechmen:

Definition 1. Es sei G ein Turnier mit m Knotenpunkten. Wir nennen G genau
dann ein &-Turnier, wenn wir dessen Knotenpunkten so numerieren kénnen, dass
fiir jedes Paar der Indexen i, j € {l, 21— m}. Folgendes gilt: Wenn G die Kante —zI;:
enthilt, dann enthilt G auch die Kante v, lvj,: (wobei wir v,,.; = v; legen).

Es ist ersichtlich, dass jedes &-Turnier eine ungerade Anzahl von Knotenpunkten
enthalt. .

Es sei G ein ¢-Turnier mit 2n + 1 Knotenpunkten. Nehmen wir die Kante ;,;;,
des Graphes G. Benennen wir eine gleichzeitige Vergrésserung der beiden Indexe
um eins, bei der wir aus der Kante;‘_z;j die Kante v;, ;v;,; bekommen die Umdrehung
der Kante ;v_; (dabei ist v;4 20+ 1) = v, fiir k = 1, 2, ...). Wir bezeichnen die Kanten-
lange v_,v_; (;:Z) des Graphes G mit d,; und wir definieren:

(6) dyy = min (|i = j|, 20 + 1 = |i = j]) .

Bei so einer Definition der Kantenlidnge gibt es nur Kanten der Linge 1, 2,...,n,
wobei es in G genau 2n + 1 Kanten der Lange i (i = 1, 2, ..., n) gibt. Es ist ersicht-
licht, dass die Kantenlinge bei der Umdrehung (auch bei der vielfachen Umdrehung)
sich nicht wechselt.

228



Es sei C ein gegebener Zyklus des Graphes G. Eine Umdrehung des Zyklus C sei
die gleichzeitige Umdrehung aller seiner Kanten genannt.

Definition 2. Unter der Liange des Zyklus C verstehen wir die Anzahl seiner Kanten.

Es sei G ein £-Turnier mit 2n + 1 Knotenpunkten. Bezeichnen wir S(G, k) die
Summe der Kantenldngen des Zyklus der Linge k des Graphes G. Aus der Defini-
tion 2 und aus (6) folgt, dass

3<S(G. k) < (2"; 1) ist.

Betrachten wir soein spezielles £-Turnier mit den Knotenpunkten vy, vy, ..., V3,41,
das die Kanten

_— — —_—

(7 DyPg; UyUs; OyUis <=3 Di¥piy
enthilt und bezeichnen wir es mit G,. Aus (7) und aus der Definition 1 folgt, dass der
Graph G, genau folgende Kanten enthilt:

—h e

(8) V103, U035 «. o5 UzpU2p 415 V2n+ 101 5
—_— — —_—_—

V103, Va4 oy V2,015 Ugpy 1V
—_— —_—

VyU45 U3Vss -0y Uzpl2s U2p4 103

V1V, VaUp+15 «++s U2pUn—25 Vap+1Un—1 >
—_— —_—

ViUnt15 V20425 <+ s V2pUn—15 U2y 1 Up -

Aus (6) folgt, dass alle Kanten in der ersten Zeile die Lange 1, der in zweiten Zeile
die Lange 2, usw. bis in der n-en Zeile die Lange n haben.

Lemma 1. Es seinen k, p solche ganzen Zahlen, fir die 1 £ p<n, 3k <
< 2n + 1 gilt. Es sei G, ein &-Turnier, das die Kanten (7) enthdlt. Bezeichnen wir
S(G,, k) die Summe der Kantenlingen von einem beliebigen Zyklus der Linge k
des Graphes G,. Dann gilt

(9) S(Gy, k) = p(2n +1).
Der Beweis folgt aus (6) und (8). Ohne Einschrinkung der Allgemeinheit geniigt

es die Summe der Kantenlingen der Zyklen der Linge k zu untersuchen, welche
Zyklen durch einen fest ausgewahlten Knotenpunkt gehen (z. B. v,).

Bemerkung 1. Auf dem Grund von (8) iiberzeugen wir uns leicht, dass S(G,, 3) =
=2n+ 1, 8(Gy,4) = 2n + 1ist.

Satz 3. Es sei G, ein ¢-Turnier mit 2n + 1 Knotenpunkten, welches die Kanten
(8) enthalt. Es seien p,(2n + 1,3) und p,(2n + 1, 4) die Zahlen aus den Sitzen 1
und 2. Bezeichnen wir Q(G, k) die Anzahl der unisomorphen Zyklen des Graphes G,
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der Linge k. Dann gilt

(10) * pn(zn + 19 3) = Q(Gl, 3) < 2p,,(2n + 1, 3) ’
(11) p.(2n + 1,4) < 0(G,, 4) < 6p,(2n + 1,4).

Beweis. Es sei G, so ein é-Turnier, welches die Kanten (8) enthlt. Es sei Cy =
= (04, Vi,Vsy» Viy» Viy0;35045 U330, ¥;,) €in Zyklus des Graphes G, der Linge 3. Es ist
ersichtlich, dass {iy, i,, i3} = {1,2,...,2n + 1} ist. Die Kantenldngen des Zyklus C,
bilden nach (6) die Zahlenfolge {d;,;,, d,;,, d;,;,}, fiir die es gilt, dass deren jedes
Glied eine ganze positive Zahl nicht grosser als n ist und dass die Summe aller 3
Glieder 2n + 1 ist; also, die angefiihrte Zahlenfolge schafft die Zerlegung der Zahl
2n + 1 in 3 Zahlen, die nicht grésser als n sind. Darum bekommen wir auf Grund
des Eingefiihrten und der Bemerkung 1 die Anzahl Q(G,, k) aller unisomorphen
Zyklen gies,G'raphen G, der Linge 3, wenn wir alle Zerlegungen der Zahl 2n + 1in 3
Zahlen nicht grésse als n finden und wenn wir aus diesen Zerlegungen alle verschiede-
ne unzyklische Permutation bilden. Wenn alle drei oder zwei Zahlen in dieser Zer-
legung verschiedenen sind, dann bekommen wir eine unzyklische Permutation. In
diesem Fall ist Q(G,, 3) = p,(2n + 1, 3). Wenn alle drei Zahlen in der angefiihrten
Zerlegung verschieden sind, dann existieren zwei unzyklische Permutationen von
diesen Zahlen und es ist Q(G, 3) = 2p,(2n + 1, 3). Fiir k = 4 durchlauft der Beweis
analogisch ausser dem Fall, dass Q(G1,4) = pu(2n + 1, 4) fir die Zerlegung der
Zahl 2n + 1 in 4 gleiche oder drei gleiche Zahlen ist; in dem Fall von zwei ver-
schiedenen und zwei gleichen Zahlen in derselben Zerlegung ist Q(Gy, 4) =
= 3p,(2n + 1, 4). Endlich in dem Fall, wenn alle Zahlen in der Zerlegung verschieden
sind, ist Q(G,, 4) = 6p,(2n + 1, 4). Damit haben wir den Satz 4 bewiesen.

In der Tabelle 2 sind die Zahlen Q(G,, 3) und Q(G,, 4) angefiihrt, wenn G, ein
&-Turnier ist, welches 3, 5, 7, 11, 13 und 15 Knotenpunkten enthilt.

Tab. 2
Anzahl der
Knotenpunkten 3 5 7 9 11 13 15
des Graphen G,
0(G,,3) 1 2 4 5 1 10
Gy, 4 0 1 4 10 20 35 56
Literatur

[1] Kotzig A.: Uber Zyklen in Turnieren, Beitrige zur Graphentheorie, Leipzig 1968, 85— 89.

Anschrift des Verfassers: Kosice, Nam. Februdrového vit. 9 (Vysoka $kola technicka).
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Casopis pro péstovini matematiky, ro¥. 97 (1972), Praha

NON-TANGENTIAL LIMITS OF THE DOUBLE LAYER POTENTIALS

MirosLAv DonNT, Praha
(Received November 20, 1970)

INTRODUCTION

We shall first introduce some fundamental notations, notions and theorems that
will be used later.

Let G be a fixed Borel set in the Euclidean m-space R™, m = 2, and suppose that
the boundary B of G is compact. Let the points of R™ be identified with m-dimensional
vectors. For each x, y € R™ denote by xy the scalar product of the vectors x, y;
denote by |x| the Euclidean norm of the vector x. Further define, for any y € R™
and r > 0,

Qy,r)={xeR™; |[x —y| <r};

the boundary of Q(0, 1) denote by I'. For a natural number a, « £ m, denote by H,
the Hausdorff a-dimensional measure. Put

~ tim (20 1) 0 M)
du(y) A H,(Qy, )

for any Borel set M = R™ provided the limit exists. d() is called the m-dimensional
density of the set M at the point y. The vector @ eI is called the exterior normal
of G at the point y € R™ in the sense of Federer provided the symmetric difference of G
and the half-space

{xeR™ (x — y)© <0}

has m-dimensional density O at y. Since at every point- y € R™ there exists at most
one exterior normal in the sense of Federer, we may define a vector-valued function
n(y) in this way: we put n(y) = O if there is the exterior normal @ at y; otherwise n(y)
equals the zero vector. Let B stand for the reduced boundary of G, i.e. the set of all
y € R™ with n(y) + 0 (always B = B). It follows from [3], theorem 4.5 that n(y) is
a Baire function; in particular, B is a Borel set.
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P(G) will denote the perimeter of G defined by
P(G) = supJ‘ div v(x) dx ,
v G

where v ranges over all m-dimensional infinitely differentiable vector-valued functions
with compact supports in R™, satisfying |v(x)| < 1 for each x € R™. In what follows
we shall assume

(0.1) ~ P(G)< .
Then (cf. [5]) H,-4(B) < 0.
For any.® € I' and z € R™ put

HO,z) ={z+r0;r >0}, #(z)={H(O,2); O€Tl}.
A point y € H(O, z) is called a hit of H(6, z) on G provided both
H(©,z2)nGn Qy,r) and (H(O,z) — G)n Q(y, 1)

have a positive H,-measure for every r > 0. If n(©, z) denotes the total number of
all the hits of H(®, z) on G, then according to [5], prop. 1.6 n(®, z) is a non-negative
Baire function of the variable @ e I'. We may thus define a cyclic variation of G at
the point z by

v(z) = j n(@,z)dH,_(0).
r
By [5], lemma 2.12 and with respect to assumption (0.1) we have

02) @)= Jilyy(_&‘l—)l dH, ()

for every z € R™. Since H,,_(B) < o and for any fixed z ¢ B the integrand in (0, 2)
is a bounded function, it is v(z) < oo (cf. also [5], lemma 2.9). Notice that v(z) < oo
implies the existence of dg(z) (cf. [5], lemma 2.7).

Let C be a space of all continuous functions on B equiped with the supremum
norm. Denote C* the space of all linear continuous functionals on C. Elements
of C* may be interpreted as bounded measures with supports in B (cf. [1]). For
peC*let u*, u~ and, |u| be positive, negative and total variations of the measure p
respectively (cf. [1]). It is known that p = p* — p~, |u| = p* + p~ and the norm
of u equals |u| (B). We define the integrability and measurability of functions and
sets with respect to u € C* in the same way as in [1]. N

If ¢, stands for the characteristic function of the set M = R™, put, for a Borel
set A B, p| A = @pp (for the multiplication of a measure by a function see [1]).
For every u € C* there exists a Borel set A = Bsuchthat u| A = p*, u| (B — A4) =
= pu~. By [1], chap. V, § 5, part 7, corollary of theorem 13 there are actually two
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disjoint sets M, N = B such that u* is concentrated on M and u~ is concentrated
on N. Clearly the set M is p-measurable (it is p*-measurable as u*(B — M) = 0 and
p~-measurable as u~ (M) = 0). Thus there exists a Borel set 4 = Bsuchthat M = 4
and |u| (A — M) = 0.1t is evident that 4 satisfies the above requirements.

Let # be the system of all bounded Baire functions on B. Assuming
(0.3) u(z) < 0,

we define the double layer potential for each fe &, z € R™ by

(0.4) W(f, 2) = ff( )"(y -

de 1(}’)

(cf. [5], lemma 2.12). Let p € C*. Then we define the double layer potential W(y, z)
for all z ¢ B and for z € B such that

(0.5) J;l"(r) (y l )I dl”l (y) < o0,

by
n -z
(06) Wi, 2) = j M0 = 2) gy,
B |.V = 2|
For M = R™, y € R™ let us call the contingent of M at y and denote by contg (M, y)

the system of all half-lines H(@, y) € #(y) for which there is a sequence of points
Yn€M(n=1,2,..)withy, + y, y, > y and

lim l_._y

=,
o |y, —

Obviously, contg (M, y) #+ 0 if and only if y is an accumulation point of M.
Now we prove the following statement which will be needed later.

0.1 Proposition. Let M <« R™, S < R™, n€ R™ and
contg (M, n) ncontg (S,n) = 0.
Then there are a > 0, 6 > 0 such that
(0.7) MnSnQnd)—1{n=9
and if dist (y, M) denotes the distance of the point y from the set M, then
(0.8) dist (y, M) 2 a|y — 1|

holds for each y € S n Q(n, d).
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Proof. The relation (0.7) follows from (0.8). Obviously, the statement is true in the
case y¢ SN M.

If the stat¢ment (0.8) were false, we could find, for any sequence {a,},>, with
0<a,<1,a,—0, two sequences {y,}:>y, {z,}s=y With y,€SnQn,a,) — {n},
z,€ M and

|yn - Z,,| < anlyn - ’1| = Auly,
where |y, — n| = r,. Putting |z, — n| = F,, we get

rn_anrnéfné r, + a,r,.

Further

09 0= Sl RO Pl | W e 2 B el B Pl | I
- Izn_"l |yn_ﬂ|| - Fn fn rn

q"_r"_*_r lr"_F"|<2
- n - =

=
Fy r.r, 1-—a,

0

as n — oo. Since the sequence {(z, — 1)/|z, — n|};%; is a sequence of points of the
compact set I', there is a convergent subsequence; we may assume it to have been
already extracted. This implies

lim 2>~ " _@ger.
n—oo |Z”—ﬂ

On the other hand, by (0.9) also

n=a |y, = 1l

Hence H(O, n) € contg (M, n) N contg (S, #) which is the desired contradiction.

The preceding proposition implies that for ne B with H(O, n) ¢ contg (B, 1)
a 6 > 0 may be found such that the set

S={n+r0;0<r<sd}
is included either in the interior of G or in R™ — G. Denoting for « € {0, 4, 1}
G, = {xeR"; d¢(x) = o},

then obviously G;;, « B, G, = G, R" — G = G,. We have S = G, or S < G,.
Further B = G,,, and by [5], lemma 3.7

H,_(Gy, — B)=0.
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In the end let us make a note that the Hausdorff measure of a set is an invariant
of the motion (i.e. a translation and a rotation) in R™. Then also the quantities v(x),
dG(x), W( f, x) are invariants of the motion, as well as the existence of the exterior
normal in the sense of Federer; so for example the reduced boundary of the set
after a motion is equal to the reduced boundary of the original set G, subjected to
the motion.

1.

Recall that the symbol G denotes a fixed Borel set in R™, m = 2 with a compact
boundary B and with a finite perimeter.

Now we shall prove this statement:

1.1 Proposition. Let S =« R™ — B, ne S n B. Then

(1.1) lim sup W(f, x) <
x—n
xe§

holds for every function f € C (or for every f € .%)'if and only if

(1.2) lim sup v(x) < o .
x-n
xeS

If, moreover, there is 6 > 0 such that
(1.3) Sn Q1 d) <G
holdslfor i=0o0ri=1,then the limit

(1.4) lim W(f, x)
=

exists for each function f e C (or for each fe & continuous at the point n) if and
only if (1.2) holds. The value of the limit (1.4) is then given by

(1.5) W(f. 1) + £(n) Hno(T) (i = dg(n)) -

Proof. First we shall prove that the condition (1.2) is necessary and sufficient for
(1.1) to be true for each f e C. If this were false, we could find x, € S (k = 1,2, ...),
X, = 1, v(x,) = oo. The point x € R™ being fixed, the quantity W(f, x) determines
a linear functional on the space C, whose norm is equal to v(x) (cf. [5], relation (2.5)).
It follows from (1.1) by Banach-Steinhaus theorem that there are two numbers k,
and ¢ such that v(x;) < c for each k > k. This is the desired contradiction.

Let (1.2) hold. Hence we have v() < oo as the function v(x) is lower semicontinuous
with respect to x € R™ according to the statement 2.9 in [5]. Further, this implies
that the density d,(n) at the point # exists (cf. [5], lemma 2.7).
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. Taking into account (0.2) and (0.4), we get that the condition (1.1) is satisfied for
each function f € #. Now suppose that (1.3) holds and prove the existence of the
limit (1.4) for any fe # continuous at the point 5. According to (1.2) there is d,,
0 < 6, < 0 such that :

¢ =sup {v(x); xe SN Qn, 5,)} < .
From the lower semicontinuity of v(x) we obtain
¢ = sup {v(x); xe S n Qn, 5,)}.

First assume that f(x) = 1 for all x € B. This (by [5], lemma 2.5, provided v(z) < o)
implies

W(f, z) = H,—(I') dg(2)
if G is bounded and

W(f, 2) = Hyp_ (1) (1 = do(2))

if G is unbounded. By the assumption (1.3) just one of the following cases occurs:
either dg(z) = 1 for each x€ S N Q(n, 8) or dy(z) = 0 for each x e S N Q(n, 9).
Moreover, comparing the values W(f, n) and W(f, z) for z € S n Q(n, 5), we arrive
at

lim W(f, x) = W(f,n) + H,_(I') (i — dg(n)) .

x—n
xeS

Now let f€ #, f continuous at the point n and f(n) = 0. Certainly there exists
a function h continuous on R™ such that 0 < h < 1, h(x) = 1 for each x € Q(0, 1)
and h(x) = O for each x € R™ — (0, 1). Putting

o) = £ (1 5 = ). ) = 1) = 046)

for any r > 0, we have g,(x) = 0 on B — Q(n, r) and
lim sup {|g,(x)|; xe B} =0.
r-0+

Since f,(x) = 0 on B n Q(n, r[2), the function W(f,, x) is continuous on Q(n, r[2).

To prove
lim W(f, x) = W(f,n),
x—n

xeS

we shall prove that W(g,, x) tends to zero uniformly on S n Q(, 5,) as r —» 0+.
This will be sufficient because

Ww(f, x) = W(f,, x) + W(g,, x)
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holds on § n Q(n, 6,). We have for each x € § n Q(, ¢,)

j g,(y)ﬂy)(_y—‘—")dy,,_l(y) <

|y = "

s sup {lagaze5) [ M0 -lan_ ) s

|W(g,, x)| =

< csup {|g.(z)|; ze B} - 0

asr - 0+. If now f € 8, f continuous at the point n, we may express this function f
in the form of a sum of two functions, a constant function on B and a function lying
in 2 continuous and vanishing at . As W(f, x) for a fixed x is linear with respect to f,
the proof is complete.

Now we shall establish conditions for the validity of (1.2). Let us prove first the
following auxiliary statement.

1.2 Lemma. Let S « R™ — B, n€ S n B,

contg (S, n) n contg (B, n) = 0
and suppose

sup H,_(2(n, r) n B) k<
r>0 r"'“

Q .

Then there are & > 0, ¢ < oo such that for each z€ S n Q(n, 6) and each r > 0

(1.6) ”m—l“jﬁz_{) 10:i 00

Proof. Proposition 0.1 implies that there are 6 > 0, a > 0 such that for every
ze S n Qn, d)

(1.7) dist (z, B) = a|z — | .
Put ry = |z — n| and r = r,b for b > 0. Certainly the relation (1.6) holds for that r
for which its corresponding value b satisfies b < a because in that case Q(z,7) N B =

= 0 and thus also H,,_,(@(z, r) n B) = 0. For that r for which its corresponding
value b satisfies b = a we have the following estimate:

H, _,(2(z, ) n B) < H,_,(Qn,r, + 1) n B) _

rm—l rm—l
_ Hp QL+ B)r)nB) (L4 Bt (LB (L4
(r(1 + b)y™? ot S et o gt

Now it is sufficient to put ¢ = k[(1 + a)"~![a™"1].
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1.3 Theorem. Let S =« R™ — B,.ne S n B and

contg (S, n) N contg (B,n) = 0.

Further suppose

(1.8) v(n) + sup H"""I(QSI”_’ lr) nf) < ®
r>0 r
Then
(1.9) lim sup v(z) < o .
‘ : 2o

zeS

Proof. By the statements 0.1 and 1.2 we determine the constants a, 8, ¢ such that
(1.7) and (1.6) hold in the corresponding set. Further we fix a point z and denote
r=|z—n, M =BnQz2r), N=B — Q(z, 2r). Using the triangular inequality
and the fundamental properties of the integral, we obtain the estimate

(1.10)  of2) <J |n(») (Y Z)I dH,,_(») +f In(¥) (v = o Ide_ () +
+Il4ﬂU—J () (v = ﬂl

ly = 2| |y — |
Now we number the quantities on the right-hand side of this inequality I, 1I, III
respectively. Then we get

dH,,_4(y) -

H, _(9(z, 2r) n B)

I
(arm 1 am—l

c, I < o(n).

To estimate III, we use
Jﬂ@@@=IﬂmemJ@>qmn
Rm (1]

where u is a Borel measure and f is a non-negative, u-integrable function on R™. The
last relation follows from [11] (there only non-negative measures are considered; in
the present case we first decompose u to the difference of the positive and the negative
variations). There is © € I such that z = 1 + r@ so that we obtain

0 @ = 2)| _ [nG) v =)l L PO =2) _n) G —m)| _
ly — 2|" ly=a" 17| ly=2" ly —n" |

Y Ak e il S Y S PR T
ly = n™|y - 2" ly - 2|

< Ly = nf” = |y = 2" ||n(y)(y —n)| +r

ly —nf™|y = 2|

ly — 2™
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Using the substitution ¢~ !/™ = x and lemma 1.2; we obtain the following estimate:

rJ. M=rwam_l(Nn{XERm; 1 m>t}>dt=
Tl Ix — 7|

_ rJ‘(zr)_mHm_l(B A Q(Z, t—l/m)) dt = rmjw Hm—l(B 0N Q(Z, x)) dx =

R 9 xm+ 1

*dx ¢
§crmJ '—2=5m.

2r X

Since for ye N
ly —n| €2y — 7|,
it is also
Wy =a"=ly—zsly—n"+ly-2"=s @ +27)|y - 2".

Thus we have

b =l =1y = 2 3y (5 - ) aBa-s0) =
vy =2y ="

<(1+27) I N |"(|yy) v n—l"‘n) dH,_ () < (1 + 2°) ofn) .

Finally, we conclude that

m—1

CEya (ZM_I + 1;'-) + ofn) (2 + 27).

Theorem 1.3 may be converted in this manner:

1.4 Theorem. Let n € B and suppose that there are linearly independent vectors
0,eI (i =1,...,m) and a number 6 > 0 such that

(L.11) sup {v(z); z G‘QIH(@,., N aQnd))=c<o.
Then
(1.12) sup H...-1(f:("n_,lr) nB) _

Proof. Assume thaty = 0,6 < 1andlet ©,(i = 1, ..., m) be linearly independent
vectors. Then there is b > 0 such that for each y e Q(n, 2b) the vectors (y — ©))
are linearly independent. There is d > 0 such that

3 luly - ©)] 2 d
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holds for each y € Q(n, b) and each u € I'. Obviously b < 1 and thus |[y — @] < 2.

Hence

i=1 Iy - @,l"’ = o

Let now 0 < r < bé and consider y € Q(n, r) N B. Then we have

o (r-o)

(1.13) 1= 2"'d‘12 - =
= -y —6;
»
r
(e
. y | 2L,

= r
' ’y = 'l;@i

If we integrate the inequality (1.13) on the set B n Q(n, r) with respect to H,,_,, we
obtain for each r, 0 < r < bd

(1.14) Hyp_(@n, 1) B) <
< 1, mg-1pt-m Yy v<;’; @,.) < im L 2mdm bt
i=1

1

Since H,,_,(B) < oo, (1.12) follows from (1.14).

1.5 Remark. The assumptions of theorem 1.4 are satisfied for example whenever
n € B and there are ®’' € I', § > 0 such that
(1.15) lim sup v(z) < o©

z—

zeH(O,n)
holds for each @ € I' with |@ — @'| < &. That last assumption is satisfied for example

whenever contg (B, n) + &(n) (or contg (G2, 1) + (n) or contg (B, n) + #(n))
and (1.15) holds for each ©® eI' with H(@, n) ¢ contg (B, n) (or H(O,n)¢

¢ contg (Gy,,, n) or H(O, n) ¢ contg (B, n)).

Let us make still a note that theorem 1.3 holds also when we write in its assumptions
contg (G, ,,, n) or coritg (B, n) instead of contg (B, ).

Taking into account the preceding remark, proposition 1.1 and theorems 1.3 and
1.4, we obtain immediately the following theorem.

1.6 Theorem. Let n € B. Then there is a finite limit
(1.16) lim W(f, z)

n
zeH(O,1)
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for each fe C (or each f€ # continuous at the point n) and for each half-line
H(O, n) ¢ contg (B, n), if and only if (1.8) holds (provided contg (B, n) + %(n)).
If H(®, n) ¢ contg (B, 1), then there exist § > 0, i € {0, 1} such that

H(@,n) n Qn, d) = G;
and whenever (1.8) holds, then the value of the limit (1.16) is given by (1.5).

In the case m = 2 we may charige the suppositions of theorem 1.4 as follows.

1.7 Theorem. Let m =2 and neB, @ €I such that H(O,n)¢ contg (B, ),
H(—0, ) ¢ contg (B, n). If there is ro > O such that

(1.17) ¢ = sup {v(z); ze H(O, n) 0 Q(n, ro)} < o,
then also
(118) SupH_l(Bn—gz(n_’_'i) < o0.

r>0 r

Proof. Suppose n =0, ® =[1,0], ro < 1. Choose r, 0 <r <r, and ye€
€Bn Qn,r). Then there is Be<0,2r) for which y = |y| [cos B, sin B]. Since
neither H(©, n) nor H(—©, n) belong to contg (B, ), we may find r', so that
r>0,0<d < in, and

(1.19) Be(d,n—d)u(n + 8,2n — 9)

for every y € B with |y| < r', y = |y| [cos B, sin B]. Further it may be supposed that
ro = r'. Let y € B. Then there is « € <0, 27 such that

(1.20) n(y) = [cos a, sina] .

The rest of the proof will be divided into the following two parts:

a) a €0, 4(n — 0)> U (n + 68), 3(r — 8)) U GB(n + 3,21,
b) we (i(r - 3), 4(n + 8) U (3x — o), 3 + ).

Put z = [r, 0]. It is easy to establish that

(121) o) 3] + In3) & = 2] 2 rleosal.

In the case a) we may write r cos (n — J) on the right-hand side of the inequality
(1.21).

We have |n(y) y| = || |cos (B — «)|. In the case b), by (1.19) it is evident that
[n(») ¥] 2 |y] cos 3 — 9).

Together we obtain that

(1.22) ") ¥l , 1n») (v = 2)] , cos ¥z ~ )
bl y—z2 = 4
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holds for each r, 0 < r < 1o, each ye B n Q(, r) and z = [r, 0]. It follows from
the lower semicontinuity of ¢(x) and from the assumption (1.17) that also o(y) < c.
If we integrate the inequality (1.22) on B n Q(n, ) (for r such that 0 < r < r,)
with respect to H,, we arrive at -

(1.23) H,(2(n, ) n E) 8¢
r ~ cos¥(n — 6)

(1.18) is now a corollary of (1.23) and of H,(B) < oo.

2,

Throughout this paragraph G = R™ (m 2 2) denotes again a Borel set with
a compact boundary B and with a finite perimeter. Now we shall deal with double
layer potential W(u, z) for p e C*.

DeR! will be termed the H,,_,-derivative on B of pue€ C* at the point ne B
(briefly the derivative at n) if for every r > 0

(2.1) H, (BnQn,r)>0
and if for each ¢ > 0 there is 6 > 0 such that

(22 __”(ﬂ)_
H,_,(M)

holds for each Borel set M = B Q(n, 6) with H,,_,(M) > 0.
D € R will be termed the symmetric H,,_,-derivative on B of yu e C* at the point
n € B (briefly the symmetric derivative at #) if there exists the limit

—D|<s

o MQmr)nB)
(&%) r1-o+ H,_4(Q(n, r) n B) b

(Note that in this definition also the assumption that (2.1) holds for each r > 0 is
contained. This is valid, by [5], lemma 3.7, for each n € B with |ds(n) — 4| < 3).

Obviously, if u has the derivative at #, then there exists also the symmetric derivative
of pu at n and their values are equal.

2.1 Lemma. Let ue C*, n€ B, S =« R — B,
contg (S, n) N contg (B, n) = 0

and suppose that p is a non-negative measure with the symmetric derwatlve on B
at n) equal to zero. Further suppose that (1.8) holds and that

(2.4) J PG =1 40 < o5 .
s [y—n"
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Then
(2.5) lim W(p, z) = W(u, ).

z=n
zeS

Proof. ForR > Oput A = u| Q(n, R),v = u| (R™ — Q(n, R)). We have W(u, z) =
= W(4, z) + W(y, z) for each z € R™ for which the left-hand side is defined. Analo-

gously to the proof of the proposition 1.1, it is sufficient to prove that there is § > 0
such that

W(4,z) -0
as R — 0+ uniformly on {n} U S N Q(n, ). For z€ S denote r = |z — n| and

M=QnR)nB—-Qn2r), N=QnR)nBnQn?2r).
We have

n -z n -
(2.6) W, z) = f "0 - 2) . ) au(y) + J ") = 2) mz) du(y) -
M Iy - ZI N Iy - Zl
Denote by I, II respectively the absolute values of the integrals on the right-hand
side of (2.6). Applying the proposition 0.1 we find a, & > 0 such that
dist (z, B) 2 a|z — n]
holds for each z€ S N Q(n, 8). If now ze S n Qn, 8), |z — n| = r, we arrive at

TP KN) ,
~ (ary"' T a™ ' H,_,(9n,2r) n B)

where

H,_(Q(n, r) n B) .

k = sup 7

r>0 r
Since the symmetric derivative of u vanishes at #, for each ¢ > 0 there is 6, > 0 such
that

u(Q(n, ¢) n B) £ am1
H,_(n,0)nB)~ 2"k

for any ¢, 0 < ¢ < &,. Hence
] | ¥
for each R such that 0 < R < §,, as we have

2m-1k u(N) _2""'% _p(Qn,2r) n B)
a"' H,_(2m 2r)nB). a™ ' H,_,(Qn,2r) n B)

<eé
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if R 2 2r (then 0 < 2r < §,) and

2"k #(N) < 2" '%k _u(@n R) n B)
a"~' H,_(Q(n,2r)nB) ~ a™' H,_,(2n, R) " B)

if R < 2r.

This estimate is independent of z € S N Q(n, 9).

Now estimate the expression I. We may consider only z € S n Q(n, 5) with 2r < R
(for a fixed R) because in the opposite case M = @ and thus I = 0. Since

J' [n() (v 7= 1] 4) = 0

amons |V = 1|

as ¢ — 0+, it is sufficient to prove that

@.7) V() = j (In(y) G-3|_[r»- n)|> d”(y)l b
m\ |y -2 ly = nl"

as R —» 0+ uniformly with respect to z on the set S n Q(n, 6). We have

(2.8) V(z) < (1 + 2"')J. ]—In(y) (v du(y) +J - |

(cf. an analogous estimate in the proof of theorem 1.3). Further

1+ 2,,,)-[ |n(») (v — )] (y 'I)| du(y) < (1 + 2,,.)]‘ ") & = 4,0 - 0

Q(n,R)nB ly - ’1|"I

du(y)

as R — 0+, where the last expression is independent of z € S N Q(n, 6). Now estimate
the expression II. Taking into account |y — z| = 4|y — | for y € M, we arrive at

According to the proof of thearem 1.3, one obtains

R

However,

{x e M; ——1——m > u} = (Q(n, R) n B — Q(n, 2r)) n Qn, u™'™).
ly = |

For u 2 (2r)™™ this set is empty and thus for these u the integrand on the right-hand
side of (2.10) equals zero. For u such that 0 < u < R™™ this set is equal to M and
thus for these u the integrand on the right-hand side of (2.10) equals p(M). Now it is
evident that

@1)  r J' W) M) J‘(zr)'-mu(MnQ(n,u“"")) du .

xly—n" R R-m
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The first term on the right-hand side of (2.11) may be estimated by

w(M) _ k p(Q(n, R) n B)
(212) "R =28, (@mR)nB)

By the substitution ¢t = u~'/™ in the second term on the right-hand side of (2.11) we
obtain

(2r)-m
(2.13) , J' "M 0 0, ) d =
- J‘ " (B - 0, 2r) 0 20, 1) 4, J’ * @m0 B) dt_
ptd - 2 Hu1(Q(n, t) 0 B) 2 —
MAnx)B) (dt _mk o wQmx)0B)
- 2 xe(0,R) Hm—l(Q('l’ JC) N B)

2r

< mrk su
- xe(oge) H,_(Q(n, x) n B) J,, 1

It follows from (2.13), (2.12), (2.11) and (2.9) that

[ 90) iy, uQnx)nB)
(2.14) J‘M ly = 2| < 2 km + l)xes(ggv H,_(2(n, x) n B) ’

as R - 0+. The quantity on the right-hand side of the last inequality is independent
of z€ S n 2(n, 6). Now it is evident that ¥(z) tends to zero uniformly on S N Q(n, 6)
as R - 0+. Hence, in fact, W(4, z) - 0 as R — 0+ uniformly on {n} U S n Q(n, 6),
which completes the proof.

2.2 Lemma. Let 1 € B such that v(y) < o and H,,_,(B n Q(n, r)) > 0 for every
r > 0. Let p € C* and suppose that there are 6 > 0 and k < oo such that

M) |,

(%19 H, (M) =

for any Borel set M = B n Q(n, 8) with H,,_ (M) > 0. Then

2.16) [ "({j‘_yi,,") alu] () < .

Proof. There exists a Borel set A c B with pu* =p|A4, p~ =p|(B - A}
Putting 2 = p | (B n Q(y, 8)), we obtain A* = 2| 4, A~ = 1| (B — A) and
(2.17) J. )0 =1 g1, (y) =
s y—n" ‘
___J‘ |n(y) (v _m’i)l dlu| () +J. I”(y) (v —m'l)l dja| (y) -
B8-2(n,9) Iy - 'Il B ly -1
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The first integral on the right-hand side of (2.17) is finite because the integrand is
bounded on B — Q(n, 8) and |u| (B) < oo. It can be easily seen that

-

(2.18) A*(M) S kH,,_ (M), A~(M) < kH,,_,(M)

for any Borel set M < B. Since A* and A~ are concentrated on two disjoint subsets
of Bn Q(rl, 6), it follows from Radon-Nikodym theorem that there is ¢ € # with
|(x)] < k for each x € B, ¢(x) = 0 for each xe B — ((n, 5) n B) and A =
= ¢(H,,-1 | B). For such function ¢ we have

f n(.V) (y oy ’1 Idlll (y) J. !‘P(J’)| H(Y) (y ) Hm—l(y) <k v(ﬂ)

lm
S0 that (2.16) is true.

2.3 Lemma. Let n € B and let u € C* has the derivative D at n. Then there exist
detivatives of u*, u~ and |p| at n and they are equal to

D+|D|’ -D+ |D|, ID|
2 2 .
respectively.

Proof. There is a Borel set 4 = B for which p* = p |4, p= = p|(B - A).
Further there is 6 > 0 such that

(M)
e

for any Borel set M = B n Q(n, &) with H,,_,(M) > 0. Now the proof will be divided
into two parts:

a) Let D = 0.

The following two cases may occur: either

H,_(AnBnQnr)>0

for every r > 0 or
H,_ (B — 4) n Qr, 1) > 0

for every r > ‘0 Consider the first case. Let M = B n Q(n, 6) be a Borel set with
H,_(M)>0.1f H,_,(A n M) = 0, then also y*(M) = 0; if H,_,(AnM)>0,

then

M) _ wAnM)

" Hp,_4(M) ™ H,_(4nM)
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Therefore, since the derivative of u vanishes at , we obtain that u* has the derivative
vanishing at . From the relations p~ = p* — p and |u| = p* + p~ we now
conclude that ™ and || have also derivatives which vanish at 5. In the second case
we can proceed analogously.
b) Let D + 0. .
Assume D > 0. There is 6;, 0 < 6, < 0 such that

wM) 'D‘ D

H,_,(M)

(2.19) ;

holds for each Borel set M = B n Q(n, ,) with H,,_;(M) > 0. Then necessarily
H,_((B— A) nQn,6,))=0.

Indeed, if this is not the case, the inequality (2.19) with (B — A4) n Q(n, 8,) written
there instead of M is false. Hence

r(BnQn é6,)=0.

This means that p~ has the derivative which vanishes at 7, u* and |u| have deriva-
tives at 5 equal to D.

The case D < 0 is analogous.

2.4 Theorem. Let S =« R™ — B, ne€ S n B,

, contg (S, n) N contg (B,n) = 0,

suppose that (1.8) holds and there is > O such that (1.3) holds. Let pe C*, p =
= A+ v, 4, ve C* such that A has the derivative D at n, |v| has the symmetric
derivative which vanishes at n. Further suppose

J‘ In(|y) (v ‘!' 'I)l dM () < .
g |y —n"

Then there exists the limit

(220) i W 2) = W 1) + D (1) ( = dolr).

zeS

Proof. We have
W(u, z) = W(4,2) + W(v*,z) — W(v~, 2)

for those z € R™ for which both sides of this equality are defined. It follows from
lemma 2.1 that
lim W(v, z) = W(v, n).

z-n
zeS
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It is sufficient to prove that (2.20) holds if we write there 1 instead of u. Put y =
= A — D(H,,—, | B). Since 4 has the derivative D at y and D(H,,—, | B) has the deriva-
tive D at n y has the derivative vanishing at . According to lemma 2.3, y* and y~
have also derivatives vanishing at #. If fe C is a function equal to unity on B, we
have

W(2,z) = DW(f,z) + W(y*,z) — W(y~, 2)

for those z € R™ for which the left-hand side is defined. It is known (cf. the proof of
the proposition 1.1) that there exists the limit
|

fim W(f, 2) = W(f, n) + Huos(1) (i — dofm) -

z-n
zeS

According to lemma 2.1 the limit
lim W(y, z) = W(y, )
z—=n

zeS

also exists (to verify the assumptions one uses lemma 2.2). This implies the statement
of the present theorem.

2.5 Remark. It is not possible to replace the requirement (2.15) in the lemma 2.2
by the “symmetric requirement”, i.e. by

| @) B
st [Hya(@m ) B

Moreover, we shall introduce an example proving that it is not sufficient to suppose
that u is a non-negative measure with the symmetric derivative vanishing at 7.

b
a;
)

g % a

1A
q,
v »0
Fig. 1



Let m = 2. Denote by [x, y] (x, y € R') the points of R?. We construct in R* the
curve ¢ consisting of the curves ¢; and y; as in fig. 1 — the reader certainly can
describe this curve precisely. Here we put r, = 1/k (k = 1,2,...), &, = nfdk (k =
=2,3, ), o, = im, r, denotes the radius of the arc (p,;, o, the angle. For the curve ¢
we may easily find a rectification, for example by an arc length — but we shall not
need it here. The curve ¢ is a Jordan curve (i.e. simple closed curve) and thus we may
consider the domain G = Int ¢. It is evident that P(G) < o, B = {¢) and B — B
is a denumerable set. Let n = [0, 0]. We have v(n) < 00. Now we define a function f
on B as follows:

fz) =
for all z on the open arc ¢, k = 2,3, ...,

/z) =0

for all other z € B. Putting u = f H, | B, we have that y € C* and u is a non-negative
measure. Let
4k+1 1

n log k T log k

ﬂ((q’k)) =7 k(“k — Ogyq) —

for k = 2, 3, ... . We shall prove that u has the symmetric derivative which vanishes
at n. Given r, 0 < r < 1, there is a natural number k such that r € (r,,, ). Then

a0 @ 1
wen)nB)= 3% g, = -
n=k+1 n=k+1 n“logn

IA

1 o 1 1 “ dt 1
Y 5= =

O — ] e
T log(k + 1)a=kt1n®* " log(k+ 1)), * klog(k+1)
Taking into account |

H,(BnQ(n,r)2 2r(>2r,‘+l = L%)

we see that u has the symmetric derivative vanishing at #.
For y € (¢,) we have n(y) = y/|y| and therefore

J‘ M——J du(y) = Lf () ‘n(lyy)(f ,1—|z") dH,(y) =

-y hLy !
k=21, k=2klogk

= 00 .

The measure y satisfies a desired requirements. Let us remark that in the preceding
example one may require ¢ to be a smooth curve.
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3.

Throughout this paragraph we always assume that m = 2. Where necessary, we
identify R? with the set of all complex numbers. Introduce the following notation:

If «eR', zeR? write H(a,z) = H(®,z) = {z + r®; r > 0}, where O =
= [cos a, sin a]. 2 stands for the set of all infinitely differentiable functions with
compact supports in R?. For z € R? put

2(z) = {9 € D; z ¢ supp ¢},

where supp ¢ denotes the support of the function ¢.

Now we shall prove two simple auxiliary assertions (which could be pronounced
in a more general form).

3.1 Lemma. Let ¢ be a Jordan curve in R? defined on {a, b) and 8 a function

with a finite variation on {a, b). Further suppose that the function 3§ is either
continuous from the right on {a, b) or continuous from the left on (a, b>. Then

(3.1) var [9; (a, b)] = sup {Ff((p(t)) dy(t); fe 2, [f| < 1}

(the integrals in (3.1) are meant in the sense of Stieltjes).

Proof. If var[9; (a, b)] =0, then the statement is obvious. Suppose that
var [9; <a, b)] > 0. It is known that

var [9; <a, b)] = sup {be(t) d¥(r); fe C(<a, b)), |f| < 1}

(integrals are always meant in the sense of Stieltjes).
Given & > 0, there is f; € C(<a, b)), |f;| < 1 such that

(3.2) J' bf,(t) ds(f) > var[9;<a, bY] — %

Assume conversely that 9 is continuous from the right on {a, b). Then the function

s(f) = var [9; <a, b)]

is continuous from the right at the point a and thus there is t, (a, b) such that for
each te{a, t,)>

s(1) <%.
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Further there exists f, € C((p)) with |f5| < 1, f2(e(t)) = f(f) for each te (to, b).
Then

j "Flol0) d5(1) = j " f4(1) ds() + j *1a(o(t) 45(9) 2

> rfl(t) ds(r) — > var [9; {a, b)] — 3e.

j “Ualol®) — £,(9) d5()

Since (@) is a compact set and f, € C({¢)), there is f € D, |f| < 1 such that

€

@) =16 = s

holds for each z € {¢)>. Then
[[rtoten @569 2 [ 1oty 09 -

fb(f (o(1) — fa(e(2) d3(1)| > var [9; <a,b>] — &.

In the case of § continuous from the left on (a, b) we may proceed completely
analogously.

3.2 Lemma. Let ¢ be a Jordan curve in R? defined on {a, b), let t, € {a, b),
I, = {a, ty), I, = (to, b) (of course, if t, = a, thenI, = 0, if ty = b, then I, = 0),
let 9; (j =1,2) be a continuous function with a locally finite variation on I;.
Then

63)  yvar[9,1] = sup {_i [ o) a9,0; 7 atoteo). 11 5 1}
j=1 =1}y,

(it is obvious how (3.3) reduces in the case ty = a or t, = b).

2
Proof. a) Let Y var[9;;I;] < co. Suppose t,€(a, b). Define a function 9
on {a, b> by J=1

9(r) = 84(t) for te<a,ty),
3(t) = 9,(1) — lim 9,(z) + lim 9,(z) for te(ty, by,
z=tot z=to~

9(t,) = lim 9,(z).
z=to~
Obvigusly, 3 is a continuous function on {a, b) with a finite variation
. 2
var [9;<a, b)] = ) var[9;;1,] .
i=
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For f e C({a, b)) we have

- s [ 10450 = [ r0as0).

i=1])p

Given ¢ > 0, then according to lemma 3.1 we may find f; € 2, | f1| <1 such that
'f " 1(@() 49(0) > var [9; <a, by] — :.
Further there is §, 0 < § < min {t, — a, b — t,} such that
var [9; <to — 8, 1, + 8>] < %

Sinc;: ¢(t,) is not contained in the compact set
o(a, to — 8) Uty + 6, b)),
there is f € 2(¢(t,)) such that |f| < 1 and f(z) = f,(z) for each
zeg(a, ty — &) U {ty + 6, b)).

From the choice of f; and 4 it follows
b
J f(o(1)) d9(7) > var [9; <a, bY] — ¢.

Analogously in the cases t, = a or t, = b.

b) Suppose, conversely, var [9,; <a, t,)] = oo.

Let t,€(a, b). Given k > 0, there is t, €(a, t,) such that var [9,;<a, t,>] >
> k + 2 and thus there is f, € 2 with |f,| < 1 and

f (o) 9, (1) > k+ 1.

There is 6, > 0 such that Q(¢(to), 26,) N @(<a, t,>) = 0. Further there is t, € (t,, t,)
such that

var [9,; {1y, ;0] < 3
(since 9, is continuous). We may find 6, > 0, 26, < t, — a such that

var [9,;<a,a +26,)] < }.

Then ¢({a + 25,, t,>) and ¢({a, a + 6,) LU {t3, b)) U Q(¢(t,), 8,) are two disjoint
compact sets and thus there is f € @ with |f| < 1, f(z) = f,(z) on the former of both
described sets and f(z) = O on the latter. Therefore, moreover, fe 2(¢(t,)). We
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arrive at

2 [ s oo = [" sroaso -

a+dz

31 a+282 t2 a+23;
= f1*(Pd\91"‘J. f1*¢d91+jf*¢d91+J f*odd, > k.
ty

a a a+dz

Analogously for ¢, = b.

The case var [39,;I,] = oo may be solved in the same way.

Throughout the rest of this paragraph y stands for a Jordan curve in R? defined
on a compact interval a, B> (« < B). Further suppose that y is a positively oriented
curve with a finite length. Denote G = Int y and, according to the preceding notation,
B = (), B being the reduced boundary of the set G. From [12], part 8, we get
var [; <&, B>] = P(G) and so

(3.4) P(G) < ® .

For zeR? a€(0,2n) let N(«, z) be the number of all points of the set <y> N
N H(a, z). The function N(a, z) is a measurable function with respect to « € <0, 2r)
(and non-negative), thus we may define

V(z) = '[ :"N(a, 7} da

(cf., for example, [6], lemma 2.1). If ® = [cos a, sin «], then n(@, z) < N(a, z)
(where n(©, z) has the same meaning as in the introduction). Hence

(3.5) u(z) < V(2).

For z € R? let U be the system of all components of the set {a, 8> — ¢~ *(z) (in the
present case U has at most two elements) and for I € U let 9. be a single-valued
continuous argument of y(f) — z on I. Define, for ze R? and fe C,

(6) Wi(f2) = 5, j 1) d50)

provided the integrals on the right-hand side exist and their sum is defined.
Prove that if ¢ € 9(z), then

(3.7 W*(p, z) = W(p, 2) .

Hence we obtain by passing to the limit that if ¥(z) < oo, then W*(f, z) = W(f, z)
for each fe C — as regards this, see the equality (3.10) in the following.

If ¢ € 9(z), then (cf. [5])

W(p, z) = j grad ¢(x)

x-z
G |x — Z‘z
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The proposition 2.3 in [8] implies

o 2 = — 4 V() -y () — x
W0, 2) L«p(w(t)) p ) + f o) 6 =55 400,

where z = [x, y], ¥ = [, ¥,]. For ¢ and the function

0 = [0 f =0 ]

(where ¢ = [&, n]) the requirements of Green theorem are satisfied (cf. [4], theorem
8.49) and thus we conclude

W'(¢,z)=jwld6+w2dn =f
¥

rotw = J grad o(u) —— Z du= W(e, z).
G

u-z
& |u — z|?
3.3 Theorem. If z € R?, then
(3.8) V(z) = v(z) .

Proof. Since by [5], assertion 1.6

u(z) = sup {W(e, 2); ¢ € 2(2), |¢| < 1}
it is sufficient to prove, with respect to (3.7), that
(3.9) V(z) = sup {W*(o, z); ¢ € 2(2), |p| £ 1}.
Let 9, 9] have the same meaning as in the definition of W*(f, z). It follows from (6)
in [8] that
(3.10) V(z) =1§1 var [95,1] .

Ifa <a<bs<B z¢y({a b)) and 9 is some single-valued argument of Y(t) — z
on {a, by, then (by 1.12 from [7])

var [9; <a, by] < dist (z; Y(<a, b)) var [y; <a, b)] .

This implies that 9! has a locally finite variation on I € . If now z € B, we may use
lemma 3.2, therefore we see that (3.9) holds. If z ¢ B, then (3.9) follows from lemma
3.1. .

3.4 Remark. Since n(©, z) < N(a, z) (Where © = [cos a, sin a]), it follows from
theorem 3.3 that for each fixed z € R?, n(@, z) = N(«, z) for almost all « € 0, 27).
In the same way as in [8] we define for t, € (a, B)

i V) =) e oy V) = ) _
G11) =l = lim o] ) =l )
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provided the limits exist. We may suppose that a, < a_ < a, + 27. If ‘t:(to) =
= —1,/(to), then we put

(3.12) 4(t0) = 74 (t0) -

3.5 Lemma. Let t € (, f).If there exist 1, (f) and t, (f), then there exists the density
dg(z) for z = Y(t). If moreover «, + a_, then

(3.13) delz) = 2in(a_ ~ )

if @y = a_, then either dg(z) = 0 or dg(z) = 1.

If, besides that, there exists t,(1), then there exists the exterior normal of G in
the sense of Federer
n(z) = —ity(z) .

Proof. Suppose that y(7) = 0, «, # «_ and that there is y € (0, 7) such that
Ay = =Y, a_. =7.

Given ¢ 0 < ¢ < y, then by the definition of r, and 7, there is § > 0, § <
< min {t — a, B — t} such that

(3.14)  [ue(t,t+ 6), Y(u) — Y(r) = e®*|Y(u) — Y(1)|, pre(—n —y, = — p)] =
= |ﬁ1 + 7"' <eg,
[ue(t— 6,0, ¥(u) — ¥(t) = () — Y())], Be<y — 1y + D] =
=8, -7 <e.

There is ro > 0 such that Q(0, ro) N y(<a, B — (t — 6, t + 8)) = 0. Prove that for
each rsuchthat 0 < r < r,

(315) Q0,r)n{z=|z|e"z+0,nee—y, 7y - >} = 20,r)nGc
cQO0,r)n{z=|z|e" nel—e—1v, e+ P}.

The sets
(3.16) Q0,r)n{z=|z|e" z %0, nece — v, y — &)},
(3.17) Q0,r)n{z=|z]e" 240, necy +¢& 21—y — &)}

are connected. To prove that (3.16) is contained in Int § and (3.17) is contained in
Ext y (which implies (3.15)), it is sufficient to prove that there is a point z, in (3.16)
with ind, (z,) = 1 and a point z, in (3.17) with ind, (z,) = 0. Put z; = 4r, z, =
= — }r (z,, z, are considered in the terms of complex numbers). Since there exist
14 (1), 7, (t) and 7, (f) = e~ ", 7, (f) = "’ where y € (0, m), it is clear that the function
Im y is decreasing at the point t. By Mafik theorem (cf. [2], theorem 126) we have

ind* (22) = ind* (Zl) - 1 .
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Since ¥ is a positively oriented curve, this equation yields necessarily ind, (z,) = 1,
ind, (z,) = 0. The relation (3.15) implies

(y—er* SH,(Q0,NNnG) = (y+¢r?

and thus, in fact, dg(z) = y/n (=(x- — o)/27). The rest of the proof, i.e. dg(z) = 0
or dg(z) = 1if «, = a_ and the existence of the exterior normal in the sense of Fe-
derer if 7,(f) exists is analogous.

Let ze R% t > 0 and let M(t, z) stand for the number of all points of the set
Yy~ 1({x; |x — z| = 1}). Then M(t, z) is a measurable function with respect to
t€(0, o) (cf. ,e.g., [6], lemma 2.5) and we may thus define, for each r > 0,

(3.18) u(z,r) = J:M(_t ,z)dt .

3.6 Theorem. If n € R? with v(n) < oo, then

L
r>0 r

holds if and only if

r>0 r

Proof. If n¢ B is the case the statement is obvious, because n(z, oo) <
< var [y; <a, B)] for each z € R? (cf. (7) in [8]) and H,(B) < co.
Let n € B. Therefore by [8], theorem 3.9

(3.19) u(n, r) < var [Y; K] < ro(n) + u(n, r),
where K, = Y~ '({z; |z — n| < r}). Now it is sufficient to prove that
(3-20) var [y; K,] = Hy(B n Q(n, 1)) .
According to [13], theorem 1.1 we have

var [y; K,] = Hy(¥(K,)) = H,(B 0 Q(n, r))

(in the present case Ny(z; K,) from theorem 1.1 in [13] is equal to unity on y(K,)
except at most at one point). Further we have B = B. Prove H,(B — B) = 0. Taking
into account theorem 1.17 from [13] we obtain that there exists 7,(¢) for var,-almost
all t € (a, B>. By [13], theorem 1.4, var [{; M] = 0 for any M < {a, B) if and only
if H,((M)) = 0. By lemma 3.5, B contains the set of all z € B for which there exists 7,
in y~(2).
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3.7 Remark. As (3.20) holds, it is

H@nn)nB) _ | ouln)
r

r>0 r

sup
r>0

If v(n) < oo, then the converse of this implication holds by theorem 3.6. If v(n) = oo,
then the converse of this implication need not hold. This will be proved by the fol-
lowing example.

5

Y

Fig. 2

Analogously to the remark 2.5 we construct a positively oriented Jordan curve ¢
as in fig. 2. (The figure is only a sketch.) Here we put a, = 1/k* (k = 1,2,...).
The curve ¢ has a finite length and if n = [0, 0] then v(y) = oc. For t > 1 we have
M(t,n) = 0 and for t with 0 < t < 1, t + a,, we have M(t, n) = 2, therefore

supM—’j = 2.
r>0 r
Further
d ® dx 7w 1
H Q , a ('\E ZE a"ZE SN~ P
l( (r’ k) )_2n=;+l _2Jk+2x 2k+ 2
Hence
HI(Q(ﬂ’ a,‘)ﬁﬁ)zz kz ©
a, T2k +2
as k — oo.

3.8 Remark. In [8] (cf. also [4]) it is proved that if n € B, then the limit

(3.21) lim W(f, z)

z-n
zeH(6,n)
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exists for any function f € C and any half-line H(O, n) ¢ contg (B, n) if and only if

o(n) + supm < .

r>0

Here this assertion follows immediately from theorems 1.6 and 3.6. If we compare
the value of the limit (3.21) introduced in [8] (or [4]) with the value of that introduced
in theorem 1.6, then lemma 3.5 certifies that these values are equal.

References

[1] N. Bourbaki: Intégration (Russian) Moscow 1967.
[2] 1. Cerny: Zaklady analysy v komplexnim oboru, Praha 1967.
[3]1 H. Federer: The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44—76.
[4] J. Krdl: Teorie potencialu I, Praha 1965.
[5] J. Krdl: The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966),
511—547.
[6] J. Krdl: Some inequalities concerning the cyclic and radial variations of a plane path-curve,
Czech. Math. Journal 714 (89), 1964, 271—280.
[7] J. Krdl: On the logarithmic potential of the double distribution, Czech. Math. Journal
14 (89), 1964, 306— 321.
[8] J. Krdl: Non-tangential limits of the logarithmic potential, Czech. Math. Journal /4 (89),
1964, 455—482.1)
[9] J. Krdl: Limits of double layer potentials, Acc. Naz. dei Lincei, Ser. VIII, vol. XLVIII,
fasc. 1, 1970, 39—42.
[10] J. Krdl: On cyclic and radial variations of a plane path, Comment. Math. Univ. Carolinae
4 (1963), No 1, 3—9.
[11] J. Lukes: Lebesguetv integral, Cas. pést. mat., 91 (1966), 371 —383.
[12] J. Ma¥Fik: Pozndmka o délce Jordanovy kiivky, Cas. pést. mat. 83 (1958), 91— 96.
[13] J. Stulc, J. Vesely: Souvislost cyklické a radialni variace cesty s jeji délkou a ohybem,
Cas. pést. mat., 93 (1968), 80—116.

Author’s address: Praha 1, Malostranské nam. 25 (Matematicko-fyzikalni fakulta UK).

1y The analogous problems are studied from a little different point of view in the article
Einige Eigenschaften von, k-dimensionalen A-Potentialen der einfachen und der doppelten Be-
legung by S. Diimmel (Atti della Accademia Nazionale dei Lincei, Memorie, ser. VIII, vol. vII,
173—201, 1965). .

258



Casopis pro péstovani matematiky, rot. 97 (1972), Praha

OPTIMAL UNIVERSAL APPROXIMATIONS OF FOURIER
COEFFICIENTS IN SPACES OF CONTINUOUS PERIODIC FUNCTIONS

PETR PRIKRYL, Praha
(Received December 4, 1970)

1. INTRODUCTION

The computation of the Fourier coefficients, i.e. the integrals
1 2n .
(1.1) I(f)=—| f(x)e " dx
2n 0

is a problem occurring frequently in practice. As a rule, the problem is numerically
solved by successive calculation of the coefficients needed using some quadrature
formula (see e.g. [4]). The effort to lower the amount of calculations in the case of
the computation of a large number of the integrals (1.1) has resulted in methods
based on the approximation of I,(f) for a given function f by an expression of the

type

(1.2) 2 (/) 9i(p)

k=1

and on the successive substitution of the values of p [7]. The point of the procedure
is that the number of the terms of this expression (and also of the functionals a,(f))
is lower than that of the Fourier coefficients computed. In this way, the number of
the evaluated functionals is reduced.

The question is which method is the most suitable one for solving the problem
described. Recently, great attention has been paid to the optimal approximations of
linear functionals (see e.g. [3], [5]). Especially, BABUSKA [1], [2] has dealt with
the optimal quadrature formulae for the computation of the Fourier coefficients.
It is necessary to keep in mind that the question of optimality is a rather ambiguous
one. Namely, the optimality problem is always studied relatively, i.e. with resbect to
a given functional space. The optimal approximation and its error depend on this
space naturally and, as shown in [2], this dependence can be very strong. The avail-
able information on f(x) does not allow us usually to determine a definite space
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where we could choose from a given class of approximations the optimal one. This
implies the importance of finding so called universal approximations. These are the
approximatiofis the error of which does not differ “too much” (in a precisely defined
manner) from that of the optimal approximation in a wide class of spaces. The
universal approximation need not be optimal in any space from the class given, but
it provides us with the desirable independence of the choice of the numerical method
on the choice of the space.

In this paper, we shall treat the universal approximations of the integrals (1.1)
supposing that we want to calculate their values for a given function f and a set P
of subscripts p. We shall assume the function f to belong to a Babuska-introduced
space of continuous 2n-periodic functions. We shall give our attention to the methods
of the-type (1.2) where we shall study the problem of the choice of the functions ax(p),
which is of decisive importance for the universality of these methods. For our con-
siderations, the choice of the functionals a; = a,(f) is not relevant though we shall
touch it in some discussions.

The paper is divided into six sections, the introduction being the first one.

The properties of Hilbert spaces of periodic functions the Fourier coefficients of
which are to be computed are summarized in the second section. Sec. 3, which has
rather auxiliary character, describes some ways of the approximation of the integrals
(1.1) by the expressions of the type (1.2). Some of the given approximations are, as
shown in the following sections, of practical importance; others are used as examples
and as counterexamples in the proofs of the theorems in the following sections.

The theoretical basis of the paper is the fourth section where the criterion of the
optimality for our problem is formulated and a lower bound on the error of the opti-
mal approximation is derived. This bound is used frequently later. The concept of
the universal approximation is introduced here, too. The study of the universality is
the subject of Sec. 5. The classes of spaces in which universal approximations do not
exist are given. An approximation universal with respect to a wide class of the spaces
of periodic functions is constructed. Further, the necessary conditions which the
functions g,(p) must satisfy for (1.2) to be a universal approximation are derived
and the optimal approximations are studied in the class of universal approximations.

The sixth section surveys the practical aspects of the results proved in the paper.

2. THE SPACES OF PERIODIC FUNCTIONS

In this section, we describe to the necessary extent the Hilbert spaces of continuous
2n-periodic functions used in our considerations. A function is meant as a complex-
valued function of one real argument in this paper unless otherwise stated. The
properties of the periodic spaces will not be proved, the theorems of this section being
particular cases of the theorems contained in [6].

First, let us define a general periodic space.
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Definition 2.1. A Hilbert space H the elements of which are continuous 2zn-periodic
functions is called periodic if the following conditions are satisfied:

(a) For all fe H,
I£lle = B(H) - |/]

where || : [lc is the usual norm in the space C,, of continuous 27- periodic functions
and the constant B(H) does not depend on f.

(b) Let f e H; then g(x) = f(x + c) e H for every real number c and ||f|| = |g].

A trivial example of a periodic space is the linear space of all the functions of the
form
aeikx
where a is an arbitrary complex number and k is a fixed integer. The scalar product
is defined as
ikx

(a,e™, ae™™) = a,a, .

Thus the functions e**, k integer, can be elements of the periodic spaces. There-
fore, we introduce a set Ay of integers for every periodic space H describing those
functions e*** which are in H.

Definition 2.2. Let H be a periodic space. An integer k is said to belong to the set A,
if e** e H.
The basic structure of periodic spaces is characterized by

Theorem 2.1. Let H be a periodic space which does not consist only of the zero
function. Then Ay + O and the system {€**}, ke Ay forms an orthogonal basis
of the space H. Furthermore,

(2.) T e <.

keAn

It will prove useful to introduce a convenient notation by the following

Definition 2.3. Let H be a periodic space, k € A5. We denote

me = [l .
We shall make use also of the following theorem justifying the rearrangements
of Fourier series and the interchanges of limits.

Theorem 2.2. Let H be a periodic space, f € H. Then the Fourier expansion of
the function f(x) converges absolutely and uniformly with respect to x.

Theorem 2.1 asserts that each non-trivial periodic space determines a sequence
N = {N}res, Of POsitive numbers satisfying (2.1). It may be shown that there exists
even a one-to-one correspondence between the class of periodic spaces and the class
of such sequences.

261



Theorem 2.3. Let A + O be a set of integers. Let n, > 0, k€ A be real numbers
satisfying the condition -

(22) ’ i

Then there exists a periodic space H such that e**e H, ke A and |e™| = n,.
This space is the completion of the linear hull generated by e™**, k € A with respect
to the scalar product

(2.3 . (e, e™) =0, k,sed, k=*s,
(e, e*) =ni, ked.

The mutual relation of the norm of an element f € H where H is a periodic space,
and its Fourier coefficients is given by Parseval’s identity having the form

(24) 1112 = X I o

in our notation,

In Sec. 5, we shall prove that for the class of periodic spaces no universal approxi-
mation exists in the set of approximating functionals that will be under consideration.
Therefore, we introduce the subclass of strongly periodic spaces the properties of
which are sufficient for the universal approximation to exist. Our definition of the
strongly periodic space differs somewhat from that of Babuska [2], [6]. We omit
namely one condition regarding the character of the increase of , as k - o Wthh is
not necessary for the con51derat10ns of this paper.

Definition 2.4. A periodic space H is said to be strongly periodic if the following
conditions are satisfied:

(c) €** e H for all integers k and n;, = n_,.
(d) me = n, for |k| ='|j, k. j integers.

When referring to the conditions (a)—(d) from Definitions 2.1, 2.4 in what follows
we shall denote them only by the corresponding letters. Note that Definition 2.4
implies that A4, is the set of all integers for strongly periodic spaces.

Examples of strongly periodic spaces are the periodic spaces H, [2] with the scalar
products

(9, h)y = ZLfgwwwvmx

where 7y, 74, ... are real numbers satisfying

(1) y; 2 0 for all integers j, yo > 0;

2) there exists-j, > 0 such that y;, =+ 0;
Jo

(3) lim y”’ 0.

Jj=o o
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3. THE APPROXIMATIONS OF FOURIER COEFFICIENTS
IN PERIODIC SPACES

Let H be a periodic space, f € H. Let us assume that we want to calculate the values
of I(f) for all p from a given set P of integers. Let P consist of r distinct elements.
(This assumption refers to the whole paper and will not be repeated afterwards.)

We shall study r-tuples of the approximating functionals of the form

6. (Gl GlN) = Lal)ar), nz 1.

We suppose gi(p), k =1,2,...,n to be complex-valued functions of an integer
argument p defined on P. For given n and P we construct the set of all {G,} such.
that a,(f) are bounded complex functionals defined on H. This set will be denoted
by M,(P). The elements of the set M,(P) will be called “approximations” shortly.

Remark 3.1. A bounded functional G means here a functional with the property
that there exists a constant K such that

l6(/)] = K|f]

is valid for all fe H. The smallest constant K of this kind will be called the norm
of the functional G and designated by |G|. For linear functionals, this definition
coincides with the usual definition of the norm. If we need to emphasize that the
norm of f is considered just in the space H we use the notation | f| . Similarly, in
order to emphasize that the norm of a functional G is taken just over the space H
we use the symbol |G| :

In the numerical methods, a,(f) are usually linear combmatlons of the values of f
(and possibly also of its derivatives) in certain points of the interval [0, 2z]. Therefore,
we shall pay attention to the asymptotic properties of the sequences of approximations

(32) {6V}, peP, 1=1,2,..., where GY(f) = Z a’(f) g«(p)

and define the set M,(P) of approximations analogously to M,(P), but with

(3.3) a(f) = Z o) f(xuo

where x{) € [0, 2n] and «{*) are complex numbers. The results obtained for the ap-
proximations from M, are related in a very simple manner to the corresponding
asymptotic statements for the sequences of approximations from M,. Moreover, the
fact that we have confined ourselves in (3.3) only to the linear combinations of the
values of f is, as the reader will find, not substantial for the considerations of this
paper. Our considerations will be concerned primarily with the properties of the
functions g,(p). The distinction between M, and M, is made rather for a better
insight and for the practical applications of the results of the paper.
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The functionals a},”( f) defined by (3.3) are linear. Their additivity and homogeneity
is obvious. The boundedness follows from the boundedness of the functionals in
question on €,, and from the continuous imbedding of H into C,, stated in (a).
The boundedness of the above a(f) implies M,(P) = M,(P).

Each approximation from M,(P) is assigned an r-tuple of the error functionals
(also “the error of the approximation” in what follows) defined as

(3‘4) Jp(f) = Ip(f) - Gp(f)
where fe H and pe P.

It will be necessary for the further study to know the errors of some simple approxi-
mations. Thus, in this section we shall prove some statements that will be used mostly

as examples and counterexamples. Their proofs are based on the Riesz representation
theorem.

Theorem 3.1. Let H be a periodic space. The functionals I, p integer, are linear
on H.If p¢ Ay then I(f) = O for all f € H (the null functional).

Proof. Obviously, I, is additive and homogeneous. For p € Ay, (2.4) implies

1
L) = = |/
Np

for all f e H, which proves the boundedness in this case. For p ¢ Ay, the statement
of the theorem is obtained through a simple calculation employing Theorem 2.2.

Now we may calculate the norm of the functional I,.

Theorem 3.2. Let H be a periodic space, p integer. Then

1
"Ip"=n_ for peAy,

4

0 for péAy.

Proof. Theorem 3.1 justifies using the Riesz representation theorem according
to which for fe H

(35) | L(f)=(F,), "Ip“ - "FP" :

It is easy to verify that
(3.6) Fy(x) = —1—2 e’ for pedy,
Np

0 for pé¢ Ay.
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The statement of the theorem follows immediately through calculating ||F || from the
relation

||Fp"2 = (Fp’ F,,) :
In the following sections we shall also use the functionals

(3.7) . K, = g(s) (alp + ﬂ’q)

where «, B are real numbers, s, p, q are integers, p # q and g(s) is a real function of
an integer argument s. We shall take them for approximations of I,. The point of this
way of approximation is roughly as follows: We know (for a given f € H) the value
of some linear combination of two Fourier coefficients. We approximate the Fourier
coefficients of f by this fixed linear combination in such a way that for the coefficient I,
we multiply the value of the above combination by the number g(s), which depends
on s but not on f. Obviously {K,} € M,.

When studying the approximations of I, we shall limit ourselves to the case where
s € Ay (for s ¢ Ay, I, is the null functional). The norm of the error of the functional K,
is given by

Theorem 3.3. Let H be a periodic space, s, p, q € Ay, p + q. Denote

a?  p? 1
(s) = g*(s) (— + —) +—.
np, M) e
Then

”IS - K’llz = ')’(S) for S * P9,

¥(p) — 20(p) 5 for s=rp,

P

ﬂ@—Zdﬂé.hrs=q~
Nq

Proof. Clearly, K, is linear and we can use the Riesz representation theorem.
Using (3.5) and (3.6), we get for s, p, g€ Ay and fe H

(3.8) K,(f) = (£ E)

where

69) E) = o) (5 + L ew).
Similarly

Iu(f) - Ks(f) = (f’ ¢:)
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and using (3.5),:(3.6) and (3.8) we get
eisx

‘ ®(x) = — — E(x).

2
The norm of I; — K is obtained again from

"Is - KSHZ = ((ps’ (DS) ;
The theorem is proved.

It is possible to prove analogous statements regarding the trapezoidal rule with j
equally spaced abscissae, i.e. the functional

(349 )= % e ().
. Jj k=1 j

Before so doing, however, we introduce a convenient notation.

Definition 3.1. Let H be a periodic space, p e Ay. Let j be a positive integer. We
denote ‘

+ o0
(3.11) CUpm) =(mp X 1,2)-
’ Ptfl.;;cﬂ
The series in the above definition converges by virtue of Theorem 2.1. The quantity
C(j, p, n) appears in the expressions for the errors of the approximations using the
trapezoidal rule. First we shall investigate its asymptotic behaviour as j — co.

Lemma 3.1. Let H be a periodic space, pe Ay. Then
(3.12) lim Y n,2%,=0
Jjo o t;p—tjeAn
t+0

and

(3.13) lim C(j, p,n) = 1.

Jj=

Proof. Denote the sum occurring on the left-hand side of (3.12) by ='. Let p € Ay
be given. We wish to prove that for every ¢ > 0 there exists an integer j, such that

b 21 <e

Np—1j

is valid for all j = j,. _
For arbitrary ¢ > 0, Theorem 2.1 implies the existence of K such that
(3.14) ¥ L.

2
ESS
keAH r,k
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Clearly, for this K we may find j, such that
|p = tj| > K
is valid for all j = j, and all ¢t # 0. Thus for j = j,

1 1 1
’ — P
an = ):A " gmzx -l
P t;p—tjedpy g f >
Pt Ltk P gy F

Using (3.14) now, we get the first statement of the lemma. The second one follows
immediately from (3.12) if we write

) , 1\7!
C(J,p,tl)=<1+n,2,2 . ) :

p—1
The lemma is proved. v
Given p and j, we find now the norm of the error functional of the trapezoidal rule.

:Theorem 3.4. Let H be a periodic space, p € Ay. Let j be a positive integer. Then
- 1—C .’ >
(3.15) I, — 19 |? = n;2 .(J P
C(j, p, )

Thus, as j — oo, L converges to I, in the norm.

Proofis exactly parallel to that of Theorem 3.2 in [2] where the author assumes A,
to be the set of all integers. According to the Riesz representation theorem, for
peAyandall fe H

() - I2(f) = (1, Y,

where
ipx + o i(p—tj)x
Dy = & _ e
¢P (x) - 2 = ”2
r p—tieds p—tj

The norm of the error functional is now obtained from
_ 3 - .
I1, = L9 = (@2, 0).

The convergence of L follows immediately from (3.15) and Lemma 3.1, and the
theorem is proved.

If we take care of the trapezoidal rule, the analogue of the functional (3.7) is the
functional

(3.16) N = g(s) (L’ + BL))
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where «, f are real numbers, s, p, q are integers, j is a positive integer and g(s) is
a real function of an integer argument. Clearly {N”} € M,. Since we shall be con-
cerned only“with the asymptotic properties of the functionals (3.16) as j — oo, our
interest here is not in deriving the formula for the error in case of a given j, but rather
in finding the limit of the norm of the error functional.

Theorem 3.5. Let H be a periodic space, p, q,s€ Ay, p %+ q. Let there be given
real numbers o, B, a function g(s) and the functionals K, and N according to
(3.7) and (3.16). Then

tim |1, - N9| = |1, - K.
Fad

Proof follows immediately from (3.7), (3.16) and Theorem 3.4.

In the remainder of this section, we shall consider another approximation con-
nected with the following problem. Suppose we know the values of I p( f) for pe P,
where P, is a subset of P. Now, the question is how to approximate I, forpe P — P,.
The reader will see that the approximation by zero functionals for pe P — P, will
play an important role in the study of universality.

We give a precise formulation restricting ourselves to the cases where P < Ay.
For each positive integer n, n < r we define the approximation {B,} € M,, as follows:
We divide P into two disjoint sets, P = P, U P,, such that P; has n elements. We
write Py = {py, P2, .. P} P2 = {Pn+1> Pnt2s ---» P} Setting

a=1I,, k=1,2,..,n;
(3.17) a(p)=1 for k=j,
0 for k*+j, j=12,..,r

in (3.1), we have clearly

B, =1, j=12..n;

Pj

O, j=n+1,n+2,..,r

where O denotes the null functional, and

(3.18) max ||I, — B,| = max |I, — B,| = max .
peP peP2 peP2 1,
Setting
(3.19) =00, k=120,

we obtain approximations {BY’} e M,, which form an analogue of {B,} important
p P n P p
in practice.
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Theorem 3.6. Let H be a periodic space, P = Ay. Let n be a positive integer,
n > r. Then there exists an integer j, such that

1
| = max —
peP2 ’Ip

(3.20) max |I, — BY| = max |I, — B
peP peP

ol
for every j = j,.

Proof follows immediately from (3.18) using Theorem 3.4 to find the number j,
such that
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