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CONTINUITY AND DIFFERENTIABILITY PROPERTIES
OF NONLINEAR OPERATORS

Joser KoLomy, Praha
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1. INTRODUCTION

A number of fixed-point theorems and approximate methods of solutions of non-
linear equations involving continuous, weakly continuous and strongly continuous
operators have been recently discovered by methods of the nonlinear functional
analysis. Hence it is important to establish some simple conditions under which
a mapping F or its derivative F'(u) possess certain continuity properties at some point
uo € X or on some subset M of a normed linear space X.

This note is devoted to the study of the above mentioned problems and it is a con-
tinuation of our papers [1], [2], [3], [4]. For the recent results concerning the related
topics, see the bibliography in [1—4].

2. TERMINOLOGY AND NOTATION

Let X, Y be normed linear spaces, X*, Y* their (adjoint) dual spaces. The pairing
between the points of X* or Y* and the elements of X or Y respectively we denote
by <., .). We use the symbols “—”, “—”" to denote the strong and weak convergence
in X,Y. To fix our notation we introduce the following well-known definitions.
A mapping F : X — Y is said to be
a) “closable” if u, — 0, F(u,) —» v implies v = F(0);

b) weakly continuous at u, € X, if u, — ug implies F(u,) = F(u,);

c) strongly continuous at u, € X, if u, — u, implies F(u,) > F(u,) ;

d) bounded in X, if for each bounded subset M = X, F(M) is bounded in X;

e) compact in X, if for each bounded set N = X, F(N) is compact in Y (a subset
M < X is called compact in X, if from each sequence (u,) € M one can select
a subsequence (u,,) so that (u, ) converges to some point u, € X);

f) p — positively homogeneous on X, if F(tu) = t* F(u) for each t 2 0 and u € X,

(p>0)
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A mapping F : X — X* is said to be monotone, if (F(u) — F(v), u — v) 20
for each u,ve X.

For the Gateaux, Fréchet differentials and derivatives, the notions of compactness,
strong continuity of the Fréchet derivative and uniform differentiability of mappings
see the terminology and notations given in the Vainberg’s book [5, Chap. I.]. We
need also the concept of the bounded differential which is due to SucHOMLINOV [6].
This notion can be introduced equivalently as follows: We shall say that a mapping
F : X — Y possesses a bounded differential dVF(u,, h) at u, € X, if

F(ug + h) — F(uy) = dVF(uo, h) + w(ug, h), heX,

where lim !]w(uo, h)|] / ||h|| = 0, dVF(uo, .) is bounded in some open neighborhood
h||—=0

V(0) of 0 and dVF(u,, ah) = a dVF(uq, h) for each real a, h € X.
Suppose that there exists a linear Géteaux differential DF(u, h) in some neighbor-
hood V(u,) of u, € X. Then DF(u, h) is said to be
g) continuous jointly at (ug, ug) € X x X, if (u,) € V(uo), (h,) € X, u, = ug, h, = u,
imply
DF(u,, h,) = DF(ug, uo) ;

h) weakly continuous jointly (strongly continuous jointly) at (ue, u,) if (u,) € V(u,),
(h)eX, u,— ug, h,—uy, imply DF(u,, h,) = DF(uo, uo) (DF(u,, h,) -
b d DF(uo, uo)).

3. CONTINUITY AND DIFFERENTIABILITY OF NONLINEAR OPERATORS

Theorem 1. Let X,Y be normed linear spaces, F a p-positively homogeneous
mapping on X. Suppose one of the following two conditions to be fulfilled: 1) F : X —
-Y,dimY < oo, F is “closable”. 2) F : X — X* is monotone on X, dimX < oo.
Then F is continuous at 0 and bounded in X.

Proof. First of all, F(0) = 0. Suppose that F is not continuous at 0. Then there
exists a sequence (v,) € X, v, > 0 and &, > 0 so that |F(v,)| 2 . Set

1

u,=Wv,,, (n=12..).

Then |u,| < (1/e3/?) |va| = O whenever n - co and

|F(u,)| = ‘F (W v,.) s (u-p(ul)W) |F@n)] = 1

foreach n (n = 1,2,...). Denote K = {yeY: ||y|| S 1}, K* = {o*eX*: "w"‘" <
S 1}. Asdim Y < oo and dim X = dim X* in the case 2), the Riesz’s theorem implies
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that K, K* are compact in Y, X*, respectively. Hence there exists a subsequence
(F(u,,)) of (F(u,)) so that F(u,)—y as k > oo and y€Y, yeX*, respectively.
Assume 1), then u,, — 0, F(u,, ) —» yimply y = F(0) = 0, a contradiction to “ y| =1
Assuming 2), we have (F(u) — F(u,,), 4 — u, > = 0, u € X. Passing to the limit in
this inequality, we obtain (F(u) —y,uy=20forallueX.Setu =1tv,t >0,veX.
Then {F(w) — y,v> 2 0, ve X. Since

lim |F(tu)| = lim | F(u)| = 0,
t-0 4 t—0 4

we conclude that {y, v) = 0 for every ve X. Therefore y = 0, a contradiction to
“ y” 1. Hence F is continuous at 0 in the both cases 1), 2). Thus for given ¢ = 1
there exists d, > 0 so that Hu" < 8o = ||F(u)| < 1. Let Dg(0) = {ue X : |u| < R}
be an arbitrary closed ball in X. Then there exists an integer n, so that R/ny < §,.

( )
”0

e = |r ()

Hence F is bounded in X. This completes the proof.

= n§ < n§.

Theorem 2. Let X, Y be linear normed spaces, F: X - Ya p — positiéely homo-
geneous operator. Let one of the following three conditions be fulfilled: (a) There
exists an open subset G = X, 0€G, so that sup |F(u)| < +o0. (b) There exists

a Baire subset M = X of the second category in X such that sup ||F(u)” < 400 and

(1) |F(u — v)| < f(max (||u], o

for each u,ve M, where a real function f(r) is defined on J = [0, + 0] and is
bounded on each subinterval [0,a] of J. (c) (u,) e X, ueX, u, > u= |F(u)]| =
< lim "F(u,,)”, X is of the second category in itself and F satisfies (1) on X.

n— o

Then F is continuous at 0 and bounded in X.

Proof. First of all we prove (a). Assume ¢, > 0 is such that |ju]| < ¢, = u€G.
Suppose F is not continuous at 0. Then there exists a sequence (u,) € X, u, -0
such that |F(u,)| = m > 0. Set

€o
2]

17l = (e 1Pl = (57

v, = u,, n=12...

Then v, € G and
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It is u, — 0, lim (e8/(2|u,]|)’) = + 0 and therefore sup |F(v,)| = +oc0,a con-
n—oo n=1,2,..

tradiction to v, € G. Hence F is continuous at 0. Assume (b). According to the

well-known theorem [7, Chap. 3] the set Wof all differences w = u — v, where u, ve

e M, is a neighbourhood of 0. Using (1), we see that F is bounded on some open

neighbourhood of 0. This fact together with the assertion (a) imply that F is conti-

nuous at 0. Assuming (c), let X, = {ueX : ”F(u)“ < n}. Then X, are closed and
o)

X = U X,. By the Baire Category Theorem at least one of X,, say X, contains an

n=1
open ball D # Q. Since X is of the second category in itself and D is open, D is
a Baire subset of the second category in X. Moreover, sup |F(u)|| < no. Now it
ueD

suffices to apply (b). Hence F is continuous at 0 in all the cases (a), (b), (c). This
property together with the p — positive homogeneity imply the boundedness of F
in X. Theorem is proved.

Let us remark that we need not require the assumption of the p — positive homo-
geneity of F for the boundedness of F in (c). Compare with the proof of Theorem 1
[3]- Theorem 2 extends the Banach’s results [8], see also [9], which concern the con-
tinuity properties of linear operations.

Theorem 3. Let X,Y be normed linear spaces, F: M - Y, M = X a bounded
subset of X, K : X —» Y a linear compact mapping in X such that HF(u) — F(v) —
— K(u — v)|| £ ofju — v|, (x > 0) for each u, ve M. Suppose there is a constant
y >0 such that HF(u) - F(v)” > y”u - v], u,ve M. If y > a, then F is strongly
continuous on M.

Proof. For u, ve M we have )
|Fl) = FO)| < «fu —of + [K(u - o) <
< :—: |F(u) — F(v)| + [|K(u — v)| -
Hence ‘ '

,u,veM.

|Fl) - F@)M < (1 - §>~1}|K(u ~v)

Suppose u, is an arbitrary point of M and (u,) € M, u, — u,. As K is compact and
linear, Ku, — Ku,. Since (Ku,) € K(M) and the weak convergence is equivalent with
the strong one on a compact set [5, chapt. I.], Ku, = Ku,. Hence K is strongly con-
tinuous in X and in view of the last inequality F(u,) — F(u,). This concludes the
proof. ,

The following theorem is a completion and generalization of Proposition 1 [10].

Theorem 4. Let X, Y be normed linear spaces, F : X - Y a mapping having a linear
Gdteaux differential DF(u, h) on some convex neighborhood V(uo) of ug€X.
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If DF(u, .) is continuous jointly, weakly continuous jointly, strongly continuous
jointly at (uo, u,), then F is continuous, weakly continuous, strongly continuous at
Uy, respectively.

Corollary 1. Suppose that F : M — Y is a compact mapping on a convex bounded
set M = X and that F possesses a linear Gdteaux differential DF(u, .) on M.
If DF(u, h) is weakly continuous jointly at the points of the diagonal AM of M
(AM = {(u, u) : u € M}), then F is strongly continuous on M.

Corollary 2. Let M = X be an open convex bounded set, F : M — Y a uniformly
Fréchet — differentiable mapping on M. Suppose F'(u) h is strongly continuous
jointly at the points of the diagonal AM of M. If F'(u) is compact on M, then F'(u)
is strongly continuous on M.

Proof. Use Theorem 4 and the arguments similar to those in [5, Thm. 4.5].

Theorem 5. Let G = X be a convex bounded subset of X, F : G - Y a mapping
such that F possesses the Fréchet derivative F'(u) and the second linear Gdteaux
differential D*F(u, h, k) on G. Assume D*F(u, h, k) is strongly continuous jointly
in (u, k) at the points of the diagonal AG of G for each (but fixed) he X. If F'(u)
is compact on G, then F'(u) is strongly continuous on G.

Proof. Let u, € G be arbitrary (but fixed), (u,) € G so that u, — u,, h € X. By the
mean-value theorem for any e} € Y*, |e,ﬂ| =1,(n=1,2...), we have

CF'(u,) h — F'(uo) h, €3> = (D*F(uq + 1,(u, — uo), h, u, — ug), eny =
= (D?*F(uo + 1,(u, — o), h, u,), ey> —
— (D*F(up + 1,y — uo), h, ), en) <
< ”DzF(uo + 1,(u, — o), h, u,) — D*F(uy, h, uo)” +
+ | D*F(uo, h, uo) — D*F(ug + t,(u, — uo), h, u)| ,
where 1, = 1,(e}) €(0, 1). As u, — u, and u, + 7,(u, — o) — u,, the both terms

on the right hand side of the last inequality tend to 0. By the Hahn-Banach theorem

we can choose e} € Y* with [}, | =1, (n = 1,2,...) so that

(F'(un) h — F'(uo) h, eyo> = |F'(un) h — F'(uo) h| .
Hence F'(u,) h — F'(uo) h for each he€ X whenever n — co. As (F'(u,)) € F'(G) =
= {F'(u) : u € G} and F'(G) is a compact set in the space (X — Y) of all linear con-
tinuous operators from X into Y, F'(u,) » F'(u) as n = co in the norm of (X — Y)
by Lemma 4.2 [5]. This completes the proof.
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Theorem 6. Let X, Y be normed linear spaces, F : X - Y a p — positively homo-
geneous operator on X. If F possesses a bounded differential dVF(u,, h) at some
uo€X, then F has dVF(u, h) on the set {tug, t > 0} and t*w(uq, h) = w(tu,, th)
for each t > 0 and he X.

Proof. First of all, we prove the following fact: if F possesses the Gateaux differen-
tial VF(uo, h) at uo, then VF(tu,, h) exists and VF(tug, h) = t*~! VF(u,, h) for each
t > 0 and h e X. Indeed,

VF(tuo, h) = ipi [F(tup + ah) — F(tup)] =
= tim (1) (o + (xf) 1) — Flouo)] (1) =

= ¢t lim © [F(u + 2'h) = Flug)] = =" VF(uo, ), ' =t
o

a’'=0
Now it is easy to see that dVF(tu,, h) exists for each t > 0 and h € X and that
) dVF(tug, h) = t*~' dVF(uo, h) .
For each h € X we have

F(t(ug + h)) — F(tug) = dVF(tue, th) + o(tug, th).
This equality, the p — positive homogeneity of F and (2) give

t°(F(uo + h) — F(uo)) = 1* dVF(uq, h) + w(tug, th), heX, (1> 0).
By the hypothesis
F(uo + h) — F(uo) = dVF(uo, h) + ow(ug, h). heX.

Our assertion follows immediately from the last two equalities. This concludes the
proof.

4. SOME REMARKS

i) The following assertion is a simple consequence of Thm. 2(b). Suppose that X, Y
are normed linear spaces, F : X —» Y a p — positively homogeneous operator on X.
Assume there exists a subset M = X of the second category in X, a mapping G : M —
= Y having the Baire property in M (i.e. there exists a subset 4 = M of the first
Category in M sothat the restriction G/(M — A) of G to M — A is continuous) so that
U€M = |F(u)| < ||G(u)|. If F satisfies the inequality (1) for each u, v € M, then F
1S continuous at 0 and bounded in X.
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