

Werk

Label: Table of literature references

Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097 | log42

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

On the other hand we can easily show that

$$\mathscr{U}_{1-\alpha} \cap (\lambda \notin \sigma_T(x)) (\lambda I - T) X \subset \cap (\lambda \notin \sigma_T(x)) (\lambda I - T) \mathscr{U}_{1-\alpha} X.$$

Take a $\lambda \in \sigma_T(x)$. By 2.5 the subspace $\mathcal{U}_{1-\varphi}X \subset X_T(\text{supp }(1-\varphi))$ and thus the operator $(\lambda I - T)$ is one-to-one on $\mathcal{U}_{1-\varphi}X$. Let us show that $(\lambda I - T)$ maps $\mathcal{U}_{1-\varphi}X$ onto itself.

Let $x = \mathcal{U}_{1-\varphi}z$, then there is a $y \in X_T(\text{supp }(1-\varphi))$ such that $x = (\lambda I - T) y$. Put $\psi(\lambda) = 0$ and $\psi(\mu) = (1-\varphi(\mu))/(\lambda - a(\mu))$ for $\mu \neq \lambda$, so that $\psi \in C^{\infty}(R_2)$. Denote $u = \mathcal{U}_{\psi}z - y$. Since

$$(\lambda I - T) u = \mathcal{U}_{1-\omega} z - (\lambda I - T) y = 0,$$

it is $\sigma_T(u) \subset \{\lambda\}$. On the other hand $\sigma_T(y) \subset \text{supp } (1 - \varphi)$, $\sigma_T(\mathcal{U}_{\psi}z) \subset \text{supp } (\psi) = \sup (1 - \varphi)$ and thus $\sigma_T(u) \subset \text{supp } (1 - \varphi)$. But $\sigma_T(u) \subset \text{supp } (1 - \varphi) \cap \{\lambda\} = \emptyset$ and u = 0. We have obtained $y = \mathcal{U}_{\psi}z$. Let $\varphi_0 \in C^{\infty}(R_2)$, $\varphi_0 \equiv 1$ in a neighbourhood of $\sigma_T(y)$ such that supp $\varphi_0 \cap \sigma_T(x) = \emptyset$. Then $y = \mathcal{U}_{\varphi_0}y = \mathcal{U}_{1-\varphi}\mathcal{U}_{\varphi_0/(\lambda-a)}z \in \mathcal{U}_{1-\varphi}X$.

So we can write

$$\bigcap_{i=0}^{\infty} (\lambda \notin \sigma_{T}(x)) (\lambda I - T) \mathcal{U}_{1-\alpha}X = \bigcap_{i=0}^{\infty} (\lambda \in \mathbb{C}) (\lambda I - T) \mathcal{U}_{1-\alpha}X.$$

Since $\{0\}$ is the only T-divisible subspace, we have $\mathscr{U}_{1-\varphi}Sx = 0$ and $Sx = \mathscr{U}_{1-\varphi}Sx + \mathscr{U}_{\varphi}Sx = \mathscr{U}_{\varphi}Sx \in X_T(\text{supp }\varphi)$ for every $\varphi \in C^{\infty}(R_2)$ such that $\varphi \equiv 1$ in a neighbourhood of $\sigma_T(x)$. From this fact it follows obviously $\sigma_T(Sx) \subset \sigma_T(x)$.

Open problem: Is there a generalized scalar operator or a spectral operator of the finite type having a non-trivial divisible subspace? 1)

References

- C. Foias: Une applications des distributions vectorielles à la téorie spectrale, Bull. Sc. Math., 84, 1960, 147-158.
- [2] C. Foias: Spectral Capacities and Decomposable Operators, Rev. Roum. Math., 13, 1968, 1537—1543.
- [3] L. Hörmander: Linear partial differential operators, 1963.
- [4] B. E. Johnson: Continuity of linear operators commuting with continuous linear operators, Trans. Amer. Soc. 128, 1967, 88—102.
- [5] B. E. Johnson, A. M. Sinclair: Continuity of linear operators commuting with continuous linear operators II (preprint).

Author's address: Praha 1, Žitná 25 (Matematický ústav ČSAV v Praze).

¹⁾ The problem was solved by the author and the results will be published.