

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097 | log41

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON CONTINUITY OF LINEAR TRANSFORMATIONS COMMUTING WITH GENERALIZED SCALAR OPERATORS IN BANACH SPACE

Pavla Vrbová, Praha (Received June 8, 1970)

1. INTRODUCTION

In the present paper we give a modification of methods having been presented in the paper of B. E. JOHNSON and A. M. SINCLAIR [5]. The question is, under which condition a linear transformation S commuting with a linear continuous operator T in a (complex) Banach space X is continuous. Similarly as in the paper mentioned above we shall deal with operator T having a suitable spectral decomposition. More exactly: suppose that there exists, for every closed subset F of the complex plane C, a closed linear subspace $\mathscr{E}(F)$ in X such that the following conditions are fulfilled:

(1)
$$\mathscr{E}(\emptyset) = \{0\}, \quad \mathscr{E}(\mathbf{C}) = X;$$

(2)
$$\bigcap_{n=1}^{\infty} \mathscr{E}(F_n) = \mathscr{E}(\bigcap_{n=1}^{\infty} F_n);$$

(3) if $\{G_j\}_{j=1}^m$ is a finite open covering of the complex plane, then

$$X = \mathscr{E}(\overline{G}_1) + \ldots + \mathscr{E}(\overline{G}_m);$$

(4)
$$T\mathscr{E}(F) \subset \mathscr{E}(F) \text{ and } \sigma(T \mid \mathscr{E}(F)) \subset F$$
.

For the sake of completness we recall now some definitions.

Definition. Let $x \in X$. A complex number λ is an element of $\varrho_T(x)$ if there is a vector-valued analytic function x(.) defined in a neighbourhood G_{λ} of λ such that $(\mu I - T) x(\mu) = x$ for all $\mu \in G_{\lambda}$. The spectrum $\sigma_T(x)$ is the complement of $\varrho_T(x)$. Obviously $\sigma_T(x) \subset \sigma(T)$.

Definition. An operator $T \in \mathcal{L}(X)$ (the algebra of all linear continuous operators of X) is said to have the single-valued extension property if for every open subset G

of the complex plane and for any vector valued analytic function $f: G \to X$ the equality $(\lambda I - T) f(\lambda) \equiv 0$ on G implies $f \equiv 0$.

For every operator T having the single-valued extension property $\sigma_T(x) = \emptyset$ if and only if x = 0.

It has been shown in [2] that each operator of the present class has the single-valued extension property and that the present class of operators is nothing else than the class of decomposable operators (in sense of $\lceil 2 \rceil$) with

(5)
$$\mathscr{E}(F) = \{x : \sigma_T(x) \subset F\}.$$

We shall use the usual notation $X_T(F) = \mathscr{E}(F)$. Let $L \in \mathscr{L}(X)$ be such that TL = LT. Then it is easy to prove that $LX_T(F) \subset X_T(F)$ for every F closed.

Hence, consider now a linear transformation S commuting with our operator T and such that $SX_T(F) \subset X_T(F)$ for every F closed.

Denote by σ_S the linear subspace of X consisting of all elements x such that there exists a sequence $x_n \to 0$ with $Sx_n \to x$. The subspace σ_S is closed. According to the closed graph theorem the transformation S is continuous if and only if $\sigma_S = 0$.

Since we have, for an arbitrary finite open covering, the decomposition of X, it is natural to take into account only the subspaces on which S is not continuous. It is easy to see that each such subspace must have a non-trivial intersection with σ_S . We shall consider, therefore, the subspace $X_T(F)$ such that $\sigma_S \subset X_T(F)$. If λ is not an element of F, then there exists a closed neighbourhood G of λ with $G \cap F = \emptyset$ and $S \mid X_T(G)$ is continuous by the closed graph theorem. This fact leads quite naturally to the following

Definition. We shall call a number λ a discontinuity value if the operator $S \mid X_T(F)$ is discontinuous for every closed neighbourhood F of λ .

Obviously every discontinuity value is an element of the set F such that $\sigma_S \subset X_T(F)$. Further, from the definition it follows immediately that the set of all discontinuity values is closed and contained in $\sigma(T)$.

Lemma. $\sigma_S \subset X_T(K)$ where K is the set of all discontinuity values.

Proof. Let $\lambda \notin K$, let F_0 be a closed neighbourhood of λ such that $S \mid X_T(F_0)$ is continuous. Let $\{G_0, G_1\}$ be an open covering of the complex plane, $\overline{G}_0 \subset F_0$, $\lambda \notin \overline{G}_1$. Take an $x \in X$, let $x_n \to 0$ with $Sx_n \to x$. Since we have, for every $x \in X$, the decomposition $x = x_1 + x_2$ where $x_1 \in X_T(\overline{G}_0)$, $x_2 \in X_T(\overline{G}_1)$, we can find sequences $x_1^1 \to 0$, $x_n^2 \to 0$ such that $x_n = x_n^1 + x_n^2$, $x_n^1 \in X_T(\overline{G}_0)$, $x_n^2 \in X_T(\overline{G}_1)$. We have $Sx_n = Sx_n^1 + Sx_n^2$. Since $S \mid X_T(\overline{G}_0)$ is continuous it follows $Sx_n^1 \to 0$, $Sx_n^2 \to x$ and $x \in X_T(\overline{G}_1)$, i.e. $\sigma_S \subset X_T(\overline{G}_1)$. We have obtained the following implication: if $\lambda \notin K$ then there is a closed F_λ such that $\lambda \notin F_\lambda$ and $\sigma_S \subset X_T(F_\lambda)$. By (5) the family of subspaces $X_T(F)$ is closed with respect to the intersection and we have

$$\sigma_S \subset \bigcap_{\lambda \notin K} X_T(F_\lambda) = X_T(\bigcap_{\lambda \notin K} F_\lambda) \subseteq X_T(K).$$

However, for the proof of the main theorem we have taken generalized scalar operators for which it is easy to characterize the structure of spaces $X_T(\{\lambda\})$.

2. PRELIMINARIES

2.1. Definition. Denote by $(C^{\infty}(R_2), \tau)$ the Fréchet space of all infinitely differentiable complex functions $\varphi(x_1, x_2)$ defined on R_2 with the family of pseudonorms

$$|\varphi|_{k,m} = \sum_{p_1+p_2=0}^{m} \sup_{(x_1,x_2)\in K} \left| \frac{\partial^{p_1+p_2} \varphi(x_1,x_2)}{\partial^{p_1} x_1 \partial^{p_2} x_2} \right|$$

for every compact set K and $p_1, p_2, m \ge 0$

2.2. Definition. A continuous linear operator T in a Banach space X is said to be a generalized scalar operator if there exists a continuous linear mapping \mathscr{U} : $(C^{\infty}(R_2), \tau) \to \mathscr{L}(X)$ such that

$$\mathcal{U}_{\varphi\psi} = \mathcal{U}_{\varphi}\mathcal{U}_{\psi} \quad \text{for} \quad \varphi, \psi \in C^{\infty}(R_2),$$

 $\mathcal{U}_1 = I, \quad \mathcal{U}_{\sigma} = T \quad \text{where} \quad a(\lambda) = \lambda.$

We shall use some properties of generalized scalar operators contained in [1] (Theorem 2, Propositions 1, 2, 3) which we mention without proving them.

- **2.3. Proposition.** Every generalized scalar operator T has the single valued extension property. If we denote $X_T(F) = \{x : \sigma_T(x) \subset F\}$ for $F = \overline{F}$, then $X_T(F)$ is a closed invariant subspace with respect to T such that $\sigma(T | X_T(F)) \subset F$.
- **2.4. Proposition.** Let $x \in X$, let φ_1 , φ_2 be two functions from $C^{\infty}(R_2)$ such that $\varphi_1 \equiv 1$ in a neighbourhood of $\sigma_T(x)$ and supp $\varphi_2 \cap \sigma_T(x) = \emptyset$. Then $\mathscr{U}_{\varphi_1}x = x$ and $\mathscr{U}_{\varphi_2}x = 0$.
- **2.5. Proposition.** Let $x \in X$. Then $\mathcal{U}_{\varphi} x \in X_T$ (supp φ) for every $\varphi \in C^{\infty}(R_2)$. Further supp $\mathcal{U} = \sigma(T)$.

Remark. Every generalized scalar operator T is an element of the class of operators having been considered in the introduction.

Indeed, proposition 2.3 asserts that (1) and (4) is satisfied for each $X_T(F)$. (2) is obviously satisfied and to prove (3) take an open covering $\{G_j\}_{j=1}^m$ of the complex plane. There exist functions $\varphi_j \in C^\infty(R_2)$ such that $0 \le \varphi_j \le 1$, supp $\varphi_j \subset \overline{G}_j$ (j = 1, 2, ..., m) and $\sum_{j=1}^m \varphi_j \equiv 1$ in a neighbourhood of $\sigma(T)$. Since supp $\mathscr{U} = \sigma(T)$ we may write, for every x, that $x = \sum_{j=1}^m \mathscr{U}_{\varphi_j} x$ where $\mathscr{U}_{\varphi_j} x \in X_T$ (supp φ_j) $\subset X_T(\overline{G}_j)$ for j = 1, 2, ..., m and (3) holds.

Every linear operator in the finite dimensional space as well as every spectral operator of the finite type are generalized scalar operators. For other examples see [1]. It will be useful to characterize the spaces $X_T(\{\lambda\})$.

2.6. Proposition. Let Q be a polynomial with the roots $\mu_1, ..., \mu_n$. Then $\{x : Q(T) | x = 0\} \subset X_T(\{\mu_1, ..., \mu_n\})$.

Proof. Let λ be a complex number and let $x, y \in X$ be such that $x = (\lambda I - T) y$. Obviously $\sigma_T(x) \subset \sigma_T(y)$. We shall show that $\sigma_T(y) \subset \sigma_T(x) \cup \{\lambda\}$ or equivalently $\varrho_T(x) \cap \{C \setminus \lambda\} \subset \varrho_T(y)$. Take a $\mu \neq \lambda$ and $\mu \in \varrho_T(x)$. There exists an analytic function $x(\gamma)$ defined in a neighbourhood G_μ of $\mu(\lambda \notin G_\mu)$ with $x = (\gamma I - T) x(\gamma)$ for $\gamma \in G_\mu$. Put $y(\gamma) = [1/(\gamma - \lambda)] (y - x(\gamma))$. The function $y(\gamma)$ is analytic in G_μ and $(\gamma I - T) y(\gamma) = y$. This means of course that $\mu \in \varrho_T(y)$.

Let Q(T) z = x. The induction with respect to the degree of the polynomial Q yields $\sigma_T(z) \subset \sigma_T(x) \cup \{\mu_1, ..., \mu_n\}$. Particularly if x = 0 then we obtain the result desired.

2.7. Proposition. If $\{\lambda_1, ..., \lambda_k\}$ is a finite set of complex numbers, then there is a polynomial P(.) with the roots $\lambda_1, ..., \lambda_k$ such that

$$P(T) \mid X_T(\{\lambda_1, ..., \lambda_k\}) = 0.$$

Proof. Denote $\mathscr{U}_{\varphi}' = \mathscr{U}_{\varphi} \mid X_T(\{\lambda_1, \ldots, \lambda_k\})$. It is easy to see that $T' = T \mid X_T(\{\lambda_1, \ldots, \lambda_k\})$ is a generalized scalar operator and \mathscr{U}' is its distribution. Let n be the order of the distribution \mathscr{U} , let f be a continuous linear functional defined on $\mathscr{L}(X)$. Put $P(\lambda) = [(\lambda - \lambda_1) \cdot (\lambda - \lambda_2) \cdot \ldots (\lambda - \lambda_k)]^{n+1}$. Then $\mathscr{V}_{\varphi} = f\mathscr{U}_{\varphi}'$ is a continuous linear functional on $(C^{\infty}(R_2), \tau)$, supp $\mathscr{V} \subset \text{supp } \mathscr{U}' \subseteq \{\lambda_1, \ldots, \lambda_k\}$ and the order of \mathscr{V} does not exceed the order of \mathscr{U}' . Since $P(\lambda)$ is zero on supp \mathscr{V} and all derivatives up to n are zero as well, it follows by [3], theorem 1.5.4. that $\mathscr{V}_P = f\mathscr{U}_P' = 0$ for each f so that $P(T) \mid X_T(\{\lambda_1, \ldots, \lambda_k\}) = \mathscr{U}_P' = 0$.

Remark. From 2.6 and 2.7 it follows that $X_T(\{\lambda_1, ..., \lambda_k\}) = X_T(\{\mu_1, ..., \mu_j\})$ $(j \le k)$ where μ_j are all eigenvalues of T from the set $\{\lambda_1, ..., \lambda_k\}$.

3. LINEAR TRANSFORMATIONS COMMUTING WITH GENERALIZED SCALAR OPERATORS

Let T be a generalized scalar operator and let S be a linear transformation such that $S X_T(F) \subset X_T(F)$ for $F = \overline{F}$.

3.1. Lemma. The set of discontinuity values is either empty or it has only a finite number of elements.

Proof. To prove the lemma, we shall suppose that there is a sequence of distinct discontinuity values $\{\lambda_i\}_{i=1}^{\infty}$ and a closed sets F_i such that $\lambda_i \in \text{Int } F_i$ and $F_i \cap \overline{\bigcup_{j \neq i} F_j} = \emptyset$ for every $i \in N$. Take further $\varphi_i \in C^{\infty}(R_2)$ with supp $\varphi_i \cap \overline{\bigcup_{j \neq i} F_j} = \emptyset$ and $\varphi_i \equiv 1$ in a neighbourhood of F_i . The restriction of S to each of $X_T(F_i)$ is a discontinuous operator so that there exists, for each $i \in N$, an element $\xi_i \in X_T(F_i)$ such that

$$\left|\xi_{i}\right|<\frac{1}{2^{i}},$$

$$\left| S\xi_{i} \right| > i \left| \mathscr{U}_{\varphi_{i}} \right|.$$

Now put $\eta = \sum_{i=1}^{\infty} \xi_i$. We can write, for each $i \in N$,

$$S\eta = S\xi_i + S\sum_{i \neq i} \xi_j.$$

If a
$$j \neq i$$
 is given, then $\xi_j \in X_T(F_j) \subset X_T(\overline{\bigcup_{j \neq i} F_j})$ and $\sum_{j \neq i} \xi_j \in X_T(\overline{\bigcup_{j \neq i} F_j})$.

By the assumption all $X_T(F)$ are invariant with respect to S so that $S\xi_i \in X_T(F_i)$ and $S\sum_{j\neq i} \xi_j \in X_T(\bigcup_{j\neq i} F_j)$. Using 2.4 we obtain

$$\mathcal{U}_{\varphi_i} S \sum_{j \neq i} \xi_j = 0$$
, $\mathcal{U}_{\varphi_i} S \xi_i = S \xi_i$.

We have, for any $i \in N$, the estimate

$$|\mathscr{U}_{\varphi_i}| \cdot |S\eta| \ge |\mathscr{U}_{\varphi_i}S\eta| = |S\xi_i| > i |\mathscr{U}_{\varphi_i}|$$

and this is a contradiction.

We shall show now that the existence of the distribution \mathcal{U} is not essential and we can prove the same result for wider class of operators.

3.2. Definition. A decomposable operator T is said to be a strongly decomposable operator if the equality

$$\mathscr{E}(F) = \mathscr{E}(F) \cap \mathscr{E}(\overline{G}_1) + \ldots + \mathscr{E}(F) \cap \mathscr{E}(\overline{G}_m)$$

holds for every finite open covering $\{G_j\}_{j=1}^m$ of the complex plane and for every subspace $\mathscr{E}(F)$.

The problem if there exists a decomposable operator which is not a strongly decomposable one is still open.

We shall use again the notation $X_T(F) = \mathscr{E}(F)$.

Lemma 3.1. Let T be a strongly decomposable operator. Then the set of discontinuity values is empty or it has only a finite number of elements.

Proof. Take the same sequence of discontinuity values as in 3.1. Let i be fixed. Since T is strongly decomposable, we have, for every $x \in X_T(\bigcup_{i=1}^\infty F_i)$, a unique representation $x = x_1^i + x_2^i$ where $x_1^i \in X_T(F_i)$, $x_2^i \in X_T(\bigcup_{j \neq i} F_j)$. The operator $R_1^i x = x_1^i$ is linear, continuous and $R_1^i \neq 0$. The transformation $S \mid X_T(F_i)$ is a discontinuous operator and we can find a $\xi_i \in X_T(F_i)$ with $|\xi_i| < 1/2^i$ and $|S\xi_i| > i|R_1^i|$. Put $\eta = \sum_{i=1}^\infty \xi_i$. Then

$$R_1^i S \eta = R_1^i S \xi_i + R_1^i S \sum_{i \neq i} \xi_j = S \xi_i$$
.

We have, for each $i \in N$,

$$\left|R_1^i\right|.\left|S\eta\right| \geq i\left|R_1^i\right|.$$

With regard to the properties of generalized scalar operators we can reformulate the lemma from the introduction as follows:

3.3. Lemma. Either $\sigma_S = \{0\}$ or there exists a finite set of eigenvalues $\{\lambda_1, ..., \lambda_k\}$ of T with the property

$$\sigma_S \subset X_T(\{\lambda_1, ..., \lambda_k\})$$
.

Proof. First we shall find the minimal subspace $X_T(F)$ containing σ_S . Denote by $\mathfrak A$ the family of all closed F such that $\sigma_S \subset X_T(F)$. Put $Y = \bigcap_{F \in \mathfrak A} X_T(F)$. It follows immediately from 2.3 that $Y = X_T(\bigcap_{F \in \mathfrak A} F)$ and $\sigma(T \mid Y) \subset F$ for each $F \in \mathfrak A$. To prove the lemma, it is sufficient to show that $\sigma(T \mid Y)$ consists of discontinuity values only. Indeed, if the set of discontinuity values is empty, then $\sigma_S \subset Y = X_T(\sigma(T \mid Y)) = X_T(\emptyset) = \{0\}$. If the set of discontinuity values consists of elements $\lambda_1, \ldots, \lambda_k$, then $\sigma_S \subset X_T(\{\lambda_1, \ldots, \lambda_k\})$.

In view of the remark in the end of the preceding section we may assume that all $\lambda_1, \ldots, \lambda_k$ are eigenvalues of T.

Take a λ which is not a discontinuity value. In such case there is a closed neighbourhood F_0 of λ such that $S \mid X_T(F_0)$ is continuous. We can find functions $\varphi_1, \varphi_2 \in C^{\infty}(R_2)$ such that $\varphi_1 + \varphi_2 \equiv 1$, $\varphi_1 \equiv 1$ in a neighbourhood of λ and supp $\varphi_1 \subset F_0$. We shall show that there exists a closed set F for which $\lambda \notin F$ and $\sigma_S \subset X_T(F)$. To prove that, take an $x \in \sigma_S$. Let $\{x_n\}$ be a sequence such that $x_n \to 0$ and $Sx_n \to x$. We have

$$Sx_n = S\mathscr{U}_{\varphi_1}x_n + S\mathscr{U}_{\varphi_2}x_n.$$

Since supp $\varphi_1 \subset F_0$, it follows that $\mathscr{U}_{\varphi_1} x_n \in X_T(F_0)$ and $S\mathscr{U}_{\varphi_1} x_n \to 0$ by the assumption that $S \mid X_T(F_0)$ is continuous. From this fact $S\mathscr{U}_{\varphi_2} x_n \to x$; x being a limit of elements of X_T (supp φ_2), it is an element of X_T (supp φ_2) as well.

3.4. Definition. A complex number λ is said to be a critical eigenvalue of T if λ is an element of the point spectrum of T and the range $R(\lambda I - T)$ is of infinite codimension, i.e. a Hamel basis in the quotient space $X/R(\lambda I - T)$ is not a finite set.

Consider now a T having a critical eigenvalue. Then there exists a discontinuous S such that TS = ST and $SX_T(F) \subset X_T(F)$ for every F closed. To prove this we shall apply the example given in [4], lemma 2.1.

Let λ be a critical eigenvalue, let $y \in X$ be a corresponding eigenvector $Ty = \lambda y$. $R(\lambda I - T)$ has not a finite codimension. Using a Hamel basis in $X/R(\lambda I - T)$ we can construct a discontinuous linear functional f defined on X with the property f(x) = 0 for $x \in R(\lambda I - T)$. The linear transformation S defined by the formula

$$Sx = y f(x)$$

is obviously discontinuous and from the equality $(\lambda I - T) S = S(\lambda I - T) = 0$ it follows that S commutes with T.

According to the definition we have, for every x, $\sigma_T(Sx) \subset \sigma_T(y) = \{\lambda\}$. Providing that $\lambda \in \sigma_T(x)$ we have $\sigma_T(Sx) \subset \sigma_T(x)$. If $\lambda \notin \sigma_T(x)$, then there is an x_λ such that $x = (\lambda I - T) x_\lambda \in R(\lambda I - T)$ and $Sx = y \cdot f(x) = 0$ so that $\sigma_T(Sx) = \emptyset \subset \sigma_T(x)$. We have obtained $\sigma_T(Sx) \subset \sigma_T(x)$ for every $x \in X$ and this is obviously equivalent to $SX_T(F) \subset X_T(F)$ for $F = \overline{F}$.

Now, knowing the properties of space $X_T(\{\lambda\})$ in case of generalized scalar operators, we can prove the following

- **3.5. Theorem.** Let T be a generalized scalar operator in a Banach space X which has no critical eigenvalue. Let S be a linear transformation such that
 - 1) TS = ST,
 - 2) $SX_T(F) \subset X_T(F)$ for $F = \overline{F}$.

Then S is continuous.

Proof. In the preceding lemma we showed that either $\sigma_S = \{0\}$ and S is continuous or that there exists a $k \ge 1$ and elements $\lambda_1, \ldots, \lambda_k$ of the point spectrum of T such that $\sigma_S \subset X_T(\{\lambda_1, \ldots, \lambda_k\})$. By 2.7 there exists a polynomial P(.) with $P(T) \mid \sigma_S = 0$. Denote by q the quotient map from X onto X/σ_S and by P(T)' the corresponding operator to P(T) from X/σ_S into X both being continuous. By the closed graph theorem we see that qS is a continuous operator so that P(T)S = P(T)' qS is continuous as well.

Since each $R(\lambda_i I - T)$ (i = 1, 2, ..., k) has a finite codimension, it is easy to see that P(T) X has also a finite codimension. In this case there exists a finite dimensional vector space Z such that we can find, for each $x \in X$, a unique representation $x = x_1 + x_2$ with $x_1 \in P(T)$ and $x_2 \in Z$. It is not difficult to prove that the maps

 $R_1x = x_1$, $R_2x = x_2$ are continuous and the space P(T)X is closed. See also [4]. Now we have

$$Sx = SR_1x + SR_2x.$$

Since $S \mid P(T) \mid X$ and $S \mid Z$ are continuous, S is a continuous operator on the whole X as well.

We have obtained the above result by a slight modification of the methods in [5]. However, the assumption that $\{0\}$ is the only T-divisible subspace can be replaced by the assumption that all $X_T(F)$ are invariant with respect to S, which is weaker.

3.6. Definition. A subspace Y is called *T-divisible* if for every complex number λ there is $(\lambda I - T)Y = Y$.

Let Z be a subspace of X invariant with respect to T. Similarly as in [5] we denote by $\bigcap (\lambda \in M) (\lambda I - T) Z$ the constant value of the transfinite sequence $Z(\alpha)$ defined by

- 1) Z(0) = Z,
- 2) $Z(\alpha + 1) = \bigcap_{\lambda \in M} (\lambda I T) Z(\alpha)$,
- 3) $Z(\alpha) = \bigcap_{\beta \prec \alpha} Z(\beta)$ for limit ordinals.

We can always find such transfinite sequence with eventual constant value. If we put Z = X and $M = \mathbb{C}$, then $\bigcap (\lambda \in \mathbb{C}) (\lambda I - T) X$ is the largest T-divisible subspace in X. For other properties see also [5]. It is easy to see that every $\bigcap (\lambda \in M) (\lambda I - T) X$ is invariant with respect to any linear transformation commuting with T. Further, $X_T(F) \subset \bigcap (\lambda \notin F) (\lambda I - T) X$ and particularly $X \in \bigcap (\lambda \notin \sigma_T(X)) (\lambda I - T) X$.

3.7. Proposition. Let T be a generalized scalar operator for which $\{0\}$ is the only T-divisible subspace.

Then, for every closed F, the subspace $X_T(F)$ is invariant with respect to any linear transformation S such that ST = TS.

Proof. Take an $x \in X$ and a $\varphi \in C^{\infty}(R_2)$ with the properties $0 \le \varphi \le 1$ and $\varphi = 1$ in a neighbourhood of $\sigma_T(x)$. We shall show that $\mathscr{U}_{1-\varphi}Sx = 0$. We have

$$x \in \bigcap_{\infty}^{\infty} (\lambda \notin \sigma_T(x)) (\lambda I - T) X$$
.

Since the subspace on the right hand side is invariant with respect to S, we obtain

$$Sx \in \bigcap^{\infty} (\lambda \notin \sigma_T(x)) (\lambda I - T) X$$
.