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1. INTRODUCTION

In the present paper we give a modification of methods having been presented in
the paper of B. E. JoHNSON and A. M. SINCLAIR [5]. The question is, under which
condition a linear transformation S commuting with a linear continuous operatot T
in a (complex) Banach space X is continuous. Similarly as in the paper mentioned
above we shall deal with operator T having a suitable spectral decomposition. More
exactly: suppose that there exists, for every closed subset F of the complex plane C,
a closed linear subspace &(F) in X such that the following conditions are fulfilled:

(1) 6(0) = {0}, &(C)=X;
@ N&(F) = 6(NF:;
(3) if {G;}7= is a finite open covering of the complex plane, then

X =6(G,) +... + 6G,);
(4) T&(F) = 6(F) and o(T|&(F)) = F.

For the sake of completness we recall now some definitions.

Definition. Let x € X. A complex number A is an element of g(x) if there is a vector-
valued analytic function x(.) defined in a neighbourhood G, of 4 such that (ul —
— T) x() = x for all u € G,. The spectrum o(x) is the complement of g;(x).

Obviously a4(x) = o(T).

Definition. An operator Te #(X) (the algebra of all linear continuous operators
of X) is said to have the single-valued extension property if for every open subset G
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of the complex plane and for any vector valued analytic function f: G - X the
equality (AI — T) f() = 0 on G implies f = 0.

For every operator T having the single-valued extension property o4(x) = 0 if
and only if x = 0.

It has been shown in [2] that each operator of the present class has the single-
valued extension property and that the present class of operators is nothing else than
the class of decomposable operators (in sense of [2]) with

(5) &(F) = {x:04(x) = F}.

We shall use the usual notation X(F) = &(F). Let L € #(X) be such that TL =
= LT. Then it is easy to prove that LX (F) = X(F) for every F closed.

Hence, consider now a linear transformation S commuting with our operator T
and such that S X(F) = X (F) for every F closed.

Denote by o the linear subspace of X consisting of all elements x such that there
exists a sequence x, — 0 with Sx, — x. The subspace oy is closed. According to the
closed graph theorem the transformation S is continuous if and only if o5 = 0.

Since we have, for an arbitrary finite open covering, the decomposition of X, it is
natural to take into account only the subspaces on which S is not continuous. It is
easy to see that each such subspace must have a non-trivial intersection with 5. We
shall consider, therefore, the subspace X7(F) such that oy = X,(F). If 4 is not an
element of F, then there exists a closed neighbourhood G of A with G n F = 0 and
S [ X1(G) is continuous by the closed graph theorem. This fact leads quite naturally
to the following

Definition. We shall call a number 1 a discontinuity value if the operator S | X (F)
is discontinuous for every closed neighbourhood F of A.

Obviously every discontinuity value is an element of the set F such that o5 < X (F).

Further, from the definition it follows immediately that the set of all discontinuity
values is closed and contained in o(T).

Lemma. o5 = X(K) where K is the set of all discontinuity values.

Proof. Let A¢ K, let F, be a closed neighbourhood of A such that S ] XT(FO) is
continuous. Let {G,, G;} be an open covering of the complex plane, G, = F,,
4 ¢ G,. Take an x € X, let x, - 0 with Sx, — x. Since we have, for every x € X, the
decomposition x = x; + x, where x; € X1(G,), x, € X;(G,), we can find sequences
X, = 0, x2 — 0 such that x, = x! + x2, x! € X1(G,), x2 € X1(G,). We have Sx, =
= Sx, + Sx7. Since S|Xy(G,) is continuous it follows Sxj — 0, Sx? —» x and
xeX(G,), i.e. 05 = X7(G,). We have obtained the following implication: if 1 ¢ K
then there is a closed F; such that 1 ¢ F, and o5 = X(F,). By (5) the family of sub-
Spaces X ;(F) is closed with respect to the intersection and we have

Og C nXT(Fl) = XT(nFl) < XT(K).
A¢K A¢K
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However, for the proof of the main theorem we have taken generalized scalar
operators for which it is easy to characterize the structure of spaces X ({A}).

-

2. PRELIMINARIES

2.1. Definition. Denote by (C*(R,), ) the Fréchet space of all infinitely differen-
tiable complex functions ¢(x;, x,) defined on R, with the family of pseudonorms

+
apl Pl(p(xh xz)
amxl apzxz

|olm= X  sup

P1+p2=0 (x1,x2)eK

for every compact set K and py, p, m 2 0.

2.2. Definition. A continuous linear operator T in a Banach space X is said to be
a generalized scalar operator if thére exists a continuous linear mapping % :
:(C*(R,), ) = ZL(X) such that

Upy = U, for ¢,y eC(R,),
U, =1, U,=T where a(l)=A41.

We shall use some properties of generalized scalar operators contained in [1]
(Theorem 2, Propositions 1, 2, 3) which we mention without proving them.

2.3. Proposition. Every generalized scalar operator T has the single valued
extension property. If we denote X(F) = {x : 64(x) = F} for F = F, then X(F)
is a closed invariant subspace with respect to T such that o(T | X+(F)) = F.

2.4. Proposition. Let x € X, let ¢, ¢, be two functions from C*(R,) such that ¢, =
= 1 in a neighbourhood of o1(x) and supp ¢, N o1(x) = 0. Then %, x = x and
U p,x = 0. .

2.5. Proposition. Let x € X. Then % ,x € X (supp @) for every ¢ € C*(R,). Further
supp ¥ = o(T).

Remark. Every generalized scalar operator T is an element of the class of operators
having been considered in the introduction.

Indeed, proposition 2.3 asserts that (1) and (4) is satisfied for each X (F). (2) is
obviously satisfied and to prove (3) take an open covering {G,}7-; of the complex
plane. There exist functions ;€ C®(R;) such that 0 < ¢, < 1, supp ¢; = G;

m

(j=1,2,..,m)and ¥ ¢, = 1 in a neighbourhood of o(T). Since supp % = o(T)

ji=1 m _
we may write, for every x, that x = )" %, x where %, x € X1 (supp ¢,) = X(G))
forj=1,2,..., mand (3) holds. ’=!
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Every linear operator in the finite dimensional space as well as every spectral
operator of the finite type are generalized scalar operators. For other examples see [1].
It will be useful to characterize the spaces X ({4}).

2.6. Proposition. Let Q be a polynomial with the roots py, ..., u,. Then {x :
: Q(T) A 0} = XT({“I’ ey un})

Proof. Let A be a complex number and let x, y € X be such that x = (Al — T) y.
Obviously 64(x) = o4(y). We shall show that a,(y) = o4(x) U {1} or equivalently
or(x) " {C\ A} = o4(y). Take a p #+ A and pe gr(x). There exists an analytic
function x(y) defined in a neighbourhood G, of u(A ¢ G,) with x = (yI — T) x(y) for
ye G, Put y(y) = [1/(y — )] (y — x(v)). The function y(y) is analytic in G, and
(yI = T) y(y) = y. This means of course that u € g-(y).

Let Q(T)z = x. The induction with respect to the degree of the polynomial [0)
yields 64(z) = a(x) U {uy, ..., p,}. Particularly if x = 0 then we obtain the result
desired.

2.7. Proposition. If {1, ..., 4} is a finite set of complex numbers, then there is
a polynomial P(.) with the roots Ay, ..., A such that

P(T) | Xo({Ay, .. 1)) =

Proof. Denote %, = U, | X1({41, ..., 4}). Itis easy to see that T' = T'| Xo({4,, ...
.» /1)) is a generalized scalar operator and %’ is its distribution. Let n be the order
of the distribution %, let f be a continuous linear functional defined on £(X). Put
=[(A=24).(A =4)...(A = Z)]"*". Then ¥", = f%,, is a continuous linear
functional on (C*(R,), 1), supp ¥" < supp ' < {4y, ..., 4} and the order of ¥~ does
not exceed the order of %'. Since P(1) is zero on supp ¥~ and all derivatives up to n
are zero as well, it follows by [3], theorem 1.5.4. that ¥"p = f%} = 0 for each f so
that P(T) | X({4y, ..., 4}) = %p = 0.

Remark. From 2.6 and 2.7 it follows that X({4,, ..., 4}) = X:({us, ..., u;})
(< k) where p; are all eigenvalues of T from the set {1y, ..., 4,}.

3. LINEAR TRANSFORMATIONS COMMUTING WITH GENERALIZED
SCALAR OPERATORS

Let T be a generalized scalar operator and let S be a linear transformation such
that SXT(F) c XT(F) fOl‘ F = F_.

3.1. Lemma. The set of discontinuity values is either empty or it has only a finite
humber of elements.
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Proof. To prove the lemma, we shall suppose that there is a sequence of distinct

discontinuity values {,}% ; and a closed sets F, such that A, € Int F;and F; n DT] =
= J¥i
= 0 for every i € N. Take further ¢, € C*(R,) with supp ¢, " U F; = @ and ¢, = |
Jj¥i
in a neighbourhood of F,. The restriction of S to each of X(F,) is a discontinuous

operator so that there exists, for each i € N, an element ¢; € X (F) such that
1
(1) & < i

ol -

o0
Now put n = Y. &;. We can write, for each i € N,
i=1

Sn=SE+SY ¢

J¥i
Ifa j + iis given, then &; € X4(F;) = X(U F;) and Y &;e X4( U F)).
J¥i Jj¥i J¥Fi
By the assumption all X(F) are invariant with respect to S so that S&; € X4(F))
and S Y ¢; € X( U F,). Using 2.4 we obtain
Jj¥i Jj¥i
ST 6 =0, 4,58 =5t
JFi

We have, for any i € N, the estimate

|, | - |51 2 |#,5n] = |s&| > i|u

ol

and this is a contradiction.

We shall show now that the existence of the distribution % is not essential and we
can prove the same result for wider class of operators.

3.2. Definition. A decomposable operator T'is said to be a strongly decomposable
operator if the equality

8(F) = 6(F) n &(G,y) + ... + 6(F) n 6(G,)

holds for every finite open covering {G;}7-; of the complex plane and for every
subspace &(F).

The problem if there exists a decomposable operator which is not a strongly
decomposable one is still open.

We shall use again the notation X (F) = &(F)

Lemma 3.1. Let T be a strongly decomposable operator. Then the set of disconti-
nuity values is empty or it has only a finite number of elements.
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Proof. Take the same sequence of discontinuity values as in 3.1. Let i be fixed.

Since T'is strongly decomposable, we have, for every x € X ( 'GnF ;), @ unique represen-
tation x = x} + x3 where xj € Xy(F,), x} GXT(U—‘Fj)' Tllle operator Rix = x! is
linear, continuous and R} # 0. The transformajti*oln S| X(F,;) is a discontinuous
operator and we can find a ¢ € X(F,;) with [¢] < 1/2 and |S¢,| > i[R}|. Put 5 =
= if,-. Then

R;Sﬂ = Risfi + R'iSjZ Ej = S¢;.
*i
We have, for each i € N, . '
[Ri|. [Sn| = i|R}|.

With regard to the properties of generalized scalar operators we can reformulate
the lemma from the introduction as follows:

3.3. Lemma. Either o5 = {0} or there exists a finite set of eigenvalues {1, ..., 4;}
of T with the property

os < Xr({Ags -os Au}) -

Proof. First we shall find the minimal subspace X ;(F) containing o5. Denote by A
the family of all closed F such that o5 = X4(F). Put Y = ) X4(F). It follows im-
Fel

mediately from 2.3 that Y = X;( ) F) and o(T|Y) < F for each F e A. To prove
Fel

the lemma, it is sufficient to show that o(T| Y) consists of discontinuity values only.
Indeed, if the set of discontinuity values is empty, then o5 = Y = X{(o(T|Y)) =
= X(0) = {0}. If the set of discontinuity values consists of elements A,, ..., 4,
then og = X7({1, ..., 4}).

In view of the remark in the end of the preceding section we may assume that all
Ay ..., A are eigenvalues of T. "

Take a A which is not a discontinuity value. In such case there is a closed neigh-
bourhood F,, of A such that S | X4(F) is continuous. We can find functions ¢,, ¢, €
€ C*(R,) such that ¢; + ¢, = 1, ¢, = 1ina neighbourhood of 1 and supp ¢, = F,.

We shall show that there exists a closed set F for which A ¢ F and o5 = X(F).
To prove that, take an x € o5. Let {x,} be a sequence such that x, — 0 and Sx, — x.

We have

Sxp, = SUpxp + SUp,x, -
Since supp ¢, < F,, it follows that %, x, € X1(F,) and S%,,x, = 0 by the as-

Sumption that S | X T(F 0) is continuous. From this fact S%,,,x, — x; x being a limit
of elements of X (supp @,), it is an element of X (supp @,) as well.

147



3.4. Definition. A complex number 1 is said to be a critical eigenvalue of T if A
is an element of the point spectrum of T and the range R(AI — T) is of infinite co-
dimension, i.e. a Hamel basis in the quotient space X [R(AI — T) is not a finite set.

Consider now a T having a critical eigenvalue. Then there exists a discontinuous §
such that TS = ST and SX(F) = X(F) for every F closed. To prove this we shall
apply the example given in [4], lemma 2.1.

Let A be a critical eigenvalue, let y € X be a corresponding eigenvector Ty =
= Ay. R(AI — T) has not a finite codimension. Using a Hamel basis in X/R(AI — T)
we can construct a discontinuous linear functional f defined on X with the property
f(x) = 0 for x e R(AI — T). The linear transformation S defined by the formula

Sx =y f(x)

is obviously discontinuous and from the equality (A — T)S = S(AI — T) =0 it
follows that S commutes with T.

According to the definition we have, for every x, 6,(Sx) = o4(y) = {1}. Providing
that 1 € o7(x) we have 67(Sx) = o(x). If A ¢ 67(x), then there is an x, such that
x= (A = T)x;eR(AI — T) and Sx = y.f(x) = 0 so that o(Sx) = 0 = a4(x).
We have obtained ¢,(Sx) = o(x) for every x € X and this is obviously equivalent
to SX(F) = X(F)for F = F.

Now, knowing the properties of space X {({1}) in case of generalized scalar
operators, we can prove the following

3.5. Theorem. Let T be a generalized scalar operator in a Banach space X which
has no critical eigenvalue. Let S be a linear transformation such that

1) TS = ST,
2) SX(F) = X{(F) for F = F.
Then S is continuous.

Proof. In the preceding lemma we showed that either o5 = {0} and S is continuous
or that there exists a k = 1 and elements 4, ..., 4, of the point spectrum of T'such that
05 = X1({As, ..., 4}). By 2.7 there exists a polynomial P(.) with P(T)|as =0.
Denote by g the quotient map from X onto X/os and by P(T)' the corresponding
operator to P(T) from X/os into X both being continuous. By the closed graph
theorem we see that ¢S is a continuous operator so that P(T)S = P(T) ¢S is
continuous as well. .

Since each R(4,I — T) (i = 1,2, ..., k) has a finite codimension, it is easy to se¢
that P(T) X has also a finite codimension. In this case there exists a finite dimensional
vector space Z such that we can find, for each x € X, a unique representation x =
= x; + x, with x, € P(T) and x, € Z. It is not difficult to prove that the maps
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Ryx = x;, R,x = x, are continuous and the space P(T) X is closed. See also [4].
Now we have

Sx = SRlx + Ssz .

Since S| P(T)X and S|Z are continuous, S is a continuous operator on the
whole X as well.

We have obtained the above result by a slight modification of the methods in [5].
However, the assumption that {0} is the only T-divisible subspace can be replaced
by the assumption that all X ,(F) are invariant with respect to S, which is weaker.

3.6. Definition. A subspace Y is called T-divisible if for every complex number 1
thereis (AI — T)Y =Y.
Let Z be a subspace of X invariant with respect to T. Similarly as in [5] we denote

by N(4 € M) (AI — T) Z the constant value of the transfinite sequence Z(«) defined by
1) Z(0) = Z,
2) Z(a + 1) = N (A — T) Z(a),
ieM

3) Z(«) =ﬂQ Z(p) for limit ordinals.

We can always find such transfinite sequence with eventual constant value. If we put
Z=Xand M = C, then (1€ C) (AI — T) X is the largest T-divisible subspace in X.

o
For other properties see also [5]. It is easy to see that every (A e M) (AI — T) X is
invariant with respect to any linear transformation commuting with T. Further,

X{(F) = A(1 ¢ F) (Al — T) X and particularly x € (\(A ¢ o1(x)) (A — T) X.

3.7. Proposition. Let T be a generalized scalar operator for which {0} is the only
T-divisible subspace.

Then, for every closed F, the subspace X (F) is invariant with respect to any
linear transformation S such that ST = TS.

Il
—

Proof. Take an x € X and a ¢ € C*(R,) with the properties 0 < ¢ < 1and ¢
In a neighbourhood of ¢,(x). We shall show that %, _,Sx = 0. We have

xeNAéo(x)) (U - T)X.
Since the subspace on the right hand side is invariant with respect to S, we obtain
)
SxeN(A¢orx)(AI - T)X.
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