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FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS
AND APPLICATIONS TO PARTIAL DIFFERENTIAL
EQUATIONS AND INTEGRAL EQUATIONS

JINDRICH NECAS, Praha*)

(Received April 15, 1970)

1. Introduction. The problem of solving a nonlinear boundary value problem or
an integral equation can be reduced often to the following abstract one: find a solu-
tion u of Tu = f, where T is a mapping from a real, reflexive Banach space B to its
dual B*.

Example 1. Let Q be a bounded domain with Lipschitz boundary ¢Q and let
afx, &gy €y --s &)y i =0, 1, ..., n, be continuous functions in @ x R, ,, satisfying
growth conditions

(1.1) laix, &)| < (1 + [¢m,

where 1 < m < 0. Let f,eL,(Q), 1/m" + 1/m =1, i =0,...,n. By W{(Q) we
denote the well-known Sobolev space of real L,, functions whose first derivatives are
also L,, functions. W,"(Q) is a Banach space with the norm [juy,.» = (fo (ju|™ +

+ Y |ou[ox,|™) dx)*/™ and is separable. W."(Q) is also reflexive as the closed sub-
i=1

space of [L,]"*!. Let W{"(Q) be the closure of D(), the space of infinitely differen-
tiable functions with compact support, in the space W."(2). We have to find u €
€ W(Q) such that for any v e W,"(Q)

(L.2) Zéza‘ x,u,a—“,...,ﬂ +vao(x,u,a—u,...,a—u dx =
0 i=1 ax,- axl ax,' y axl ax,,
=J.vf0dx— Zgﬂfidx.
Q i=10x;

e —

*) Lecture held on the Chicago area applied mathematics seminar.
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The function u is called weak solution of the differential equation

S 0 [ ou ou ou ou = o,
1.3) =Y —(a,(x,u,—, ..., +al(xu—,..,—)=f+Y L
(13) igl 6x,( ‘( 0x4 6x,,)) ( 0x, 6x,,) £ xgx 0x;

in Q, satisfying on the boundary the condition u = 0.

Denoting by (w*, u) the pairing between B* and B, we can define an operator T':
: B - B*, putting

(T’u,v)d=f (Za,(x,u,ﬂ-,...,ﬁ —‘Zg+ao x,u,—ai,...,ﬁ v)dx.
a \i=1 0x, 0x,/ 0x; 0x, ox,
»
Because -[ fov dx — [o Y f{@v/ox;) dx = (f, v), the equation (1.2) is reduced to the
i=1

problem of solving the equation Tu = f.

Example 2. Let us consider the Hammerstein’s integral equation
(1.4) u(x) — ).J K(x, y) f(y, u(y)) dy = w(x),
M

where the solution is supposed in L,(M), M being a compact subset of R,, w € Ly(M),
f(y,u) is a continuous function on M x Ry, satisfying the growth condition
|£ (3 w)| < c(1 + |u]). We suppose [y [u K*(x, y) dx dy < co. If (Tu) (x) = u(x) —
— A [ K(x, y) f(y, u(y)) dy, then T: L,(M) — L,(M) and the problem is reduced to
the solution of Tu = w.

2. Borsuk type theorem. A mapping T'is said to be bounded if the image of bounded
set is bounded and it is said to be demicontinuous, if from u, — u (strong con-
vergence) follows Tu, — Tu (weak convergence).

Theorem 1. Let T: B — B*, where B is a reflexive space, be a bounded, demi-
continuous mapping. Let T(u) = T(u) — t T(—u) for0 <t < 1. Let for0 < t < 1,
the condition (S) be satisfied:

(21) if u,—u and (T(u,)— T(u),u,—u)—>0,
then u, — u, and for f € B* the condition
(2.2) “Tu—(1—-10)f+0 for |u|=R>0, 05t<1.

Then there exists a solution of Tu = f. _

Let us remark first that the above solution is unique if, for example, the operator T
is strictly monotone: u # v = (Ty — Tv, 4 — v) > 0.

Theorems as above are based on the concept of monotone operators, and there is
a large amount of literature .on this subject, compare, for example, M. I. Vi§ik [11],
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F. E. BROWDER [1], J. LErAY, J. L. LioNs [6], G. J. MiNTY [7]. The concept using
Borsuk’s theorem was recently used in the paper of D. G. DE FIGUEIREDO, CH. P.
GUPTA [3] and elsewhere.

The main ideas of the proof of Theorem 1: First, if B = R, then the degree
(T(u), B(0, R), 0) is an odd integer by Borsuk’s theorem, hence by homotopy, this
is true for T(u) — f, hence, there exists |u] < R such that Tu = f. If F = B is
a finite dimensional subspace of B and Y is the injection of T — B, ¢J§ being its

dual mapping, then for Ty -4 YTy, it can be proved by contradiction existence of

a F such that if F’' > F, then Tp.(u) — tTp(—u) — (1 — t) Y7 f + O for ||u]| = R,

ueF',0 <t < 1. Hence for every F’ o F, there exists ug. € F' such that Tp.up =

= Yy.f.Letusput My, = {up. | F” > F'}. The set of M. has finite intersection pro-

perty. If My. is the closure in the weak topology, then (Y\Mj. 3 u. If w, u € F’ for F’
¥

such chosen, then there exists u,e My, u, — u and because of lim (Tu, = Tu,

n—* o

u, — u) = lim (Tu,, u, — u) =..lilg (f, up — u) = 0, (Tu,, u, — u) = (f, u, — u)

n—aw
follows from the definition of T5.) the condition (2.1) implies u, — u, what, in virtue
of the demicontinuity of T, gives the result. We have clearly:

Consequence 1. If the operator T is coercive:

lim (—Tu’—u) = o, then T(B) = B*.
i~ uf

This is because (T, u) 2 c(||u|) ||, with ¢(s) - oo for s - co.

Consequence 2. If the conditions of theorem 1 are satisfied and T'is odd: T(—u) =
= —T(u) and if T is weakly coercive: lim |Tu| = oo, then T(B) = B*.
llull =
Let us consider the following class of operators: first if for » > 0 and every ¢ > 0:
A(tu) = 1* A(u), then A is called x-homogeneous.

An operator S is asymptotically zero if for » > 0 lim | Sul|/||u|* = 0.
llu]l =
We have the following Fredholm alternative:
Theorem 2. Let T = A + S, where A is demicontinuous, x-homogeneous, satisfies
the condition (S) (i.e. if u,— and (A(u,) — A(u), u, — u) > 0, then u, > u),
S is demicontinuous, asymptotically zero (with the same x as for A) and T'is bounded

odd and satisfies the condition (S). Then the range of T is all of B* if Au = 0=
= u = 0. In this case, for every solution,

23 Juf 5 ot + 7).

If (2.3) is true for every solution, then Au = 0 =>u = 0.
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Theorems of this type are recent. It seems the first paper is due to S. I. POCHOZAJEV
[10] and to the author [8]. For further results, compare F. E. BROWDER [2] and the
forthcoming papér of J. Ne€as [9]; compare also M. KUCERA [5].

Proof of Theorem 2:

(i) If (2.3) is true and there exists uo + O such that Au, = 0, then for u = tu,:

ol 5 ¢ (7 + ) ol = 0

which is a contradiction.

(i) Let Au = 0 = u = 0. Then (2.3) is true: if not, there exists a sequence [ju,[ —
— 00 such that

(24) - [uaf|* > n(1 + || Tu,|) and putting v, = Un_

Juall”

we can supposé v, — v and we obtain from (2.4) Av, — 0 and using (S) condition:
v, = v, hence ||| = 1 and Av = 0 which is a contradiction.

(iii) (2.3) implies (2.2), and (2.1) is satisfied because T(u) = (1 + ) T(u).

3. Back to the applications. Let us remark first that it is only a question of intro-
ducing enough of indices to treat general systems instead of one partial differential
equation as we will do; there is no essential difference.

I) We consider first the problem:

60 =3 (w2) - aao(vu 2 ) =i + 5 L

0xj X4 i=10x;

with a;; eLw(Q), Z a;¢&; = c|é|?. Let us suppose
i,j=1 .

(32)

;‘10("’ 1) —igob.-(x) f;’ < (r) [(iz;':ogg)l/z +1]

with ¢(f) - 0 for t — 0, b; € L,(R). The condition (3.2) implies immediately that
Ru < aq(x, u, dufox,, ..., dufox,) — Y bx) du[dx; — bo(x) u satisfies the condition
. i=1

lim ||Rulg,/||u]w,» = O. Supposing ao(x, —&) = —ao(x, £) and defining

llull =
n
(Au,v)d=f Y ay; 2~a—vdx, (Su,v) Jao(x,u,ﬂ-,. ] vdx,
o bi=1  0x; 0x; 2 0x4 6x

we obtain in virtue of the fact the imbedding Wi")(Q) — L,(€) is completely conti-
nuous, that Su is a completely continuous operator from W — (W{Y)*. Because 4
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and S above defined satisfy with ¥ = 1 the conditions of the theorem 2, this altogether
gives by theorem 2 this result:

For every f;€ Ly(Q), i = 0, ..., n, there exists a solution of (3.1) with u = 0 on 0Q

and for every solution, we have |ullw,a < (1 + ||folL, + Z Ifill..) if and only
if A is not an eigenvalue for the linear problem

_y 2 ( ax,) - ,12 <b,(x) ;’—;‘ + bo(x) u) —0, ueW(Q).

i,j=1 0xi
II) If we consider a nonlinear problem with m = 2, then we suppose:

(3.3) %%Q

—&@QF&MU+M”%i=Qmm,

where A (x, &) satisfy the conditions (1.1) and ¢,(f) — 0 for t — co. Let A(x, £) and
afx,&) be odd in & and A(x, t&) = " '4(x, &), t > 0. We shall suppose for
afx, &) and A(x, £) the conditions (we write them only for 4,): if [¢y,..., &,] +
+ [£&, ..., &] then

(3'4) ‘—Zl(Ai(x’ 50’ 51’ ceey én) - Ai(xa 60’ 517 bochy é;’.)) (éi - é:) > 0

and

(35) .ZIAE(X’ 60’ 61’ vaey éu) éi 2 CI.ZIKEIM - CZICOIM "

For to apply theorem 2, we can easily verify (for details compare J. LERAY, J. L.
LioNs [6]) the hypothesis eventually with the exception of the condition (S): for to
see this, let u, — u in W"(Q). We have first by the complete continuity of the imbed-

ding W{(Q) - L,(Q): u, > u in- L,(R). Choosing a subsequence, if necessary,
still noted u;, we have u,(x) — u(x) almost everywhere. By hypothesis,

lim Y (a x,uk,gﬁi,...,%‘ —a; x,u,—?—'i,...,?ﬁ

k-w Jgi=1 0x4 0x, 0x4 0x,
%—ﬁ‘— dx + a x,u,,,au",...,%‘n)-—ao x,u,a—u,...,2
ox;  Ox; 2 0x, ox, 0xy 0x,,

(4 — u)dx =0.

~ The second member tends to zero, hence also the first, but in virtue of (3.4) putting

o ou ou ou ou\/ou, . ou
filx) = a x,u,——"—,...,—")—-a Xy Upy — 5 o0ey — ——"—'-—)),
() s;( ‘< * 0x, 0x, : - 0%, 0x,/\0x;  0x;
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