

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS AND APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS AND INTEGRAL EQUATIONS

JINDŘICH NEČAS, Praha*) (Received April 15, 1970)

1. Introduction. The problem of solving a nonlinear boundary value problem or an integral equation can be reduced often to the following abstract one: find a solution u of Tu = f, where T is a mapping from a real, reflexive Banach space B to its dual B^*

Example 1. Let Ω be a bounded domain with Lipschitz boundary $\partial \Omega$ and let $a_i(x, \xi_0, \xi_1, ..., \xi_n)$, i = 0, 1, ..., n, be continuous functions in $\overline{\Omega} \times R_{n+1}$, satisfying growth conditions

$$|a_i(x,\xi)| \leq c(1+|\xi|)^{m-1},$$

where $1 < m < \infty$. Let $f_i \in L_m(\Omega)$, 1/m' + 1/m = 1, i = 0, ..., n. By $W_m^{(1)}(\Omega)$ we denote the well-known Sobolev space of real L_m functions whose first derivatives are also L_m functions. $W_m^{(1)}(\Omega)$ is a Banach space with the norm $\|u\|_{W_m^{(1)}} = (\int_{\Omega} (|u|^m + \sum_{i=1}^n |\partial u/\partial x_i|^m) dx)^{1/m}$ and is separable. $W_m^{(1)}(\Omega)$ is also reflexive as the closed subspace of $[L_m]^{n+1}$. Let $\mathring{W}_m^{(1)}(\Omega)$ be the closure of $D(\Omega)$, the space of infinitely differentiable functions with compact support, in the space $W_m^{(1)}(\Omega)$. We have to find $u \in \mathring{W}_m^{(1)}(\Omega)$ such that for any $v \in \mathring{W}_m^{(1)}(\Omega)$

$$(1.2) \int_{\Omega} \left(\sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}} a_{i} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) + v a_{0} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) \right)^{*} dx =$$

$$= \int_{\Omega} v f_{0} dx - \int_{\Omega} \sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}} f_{i} dx.$$

^{*)} Lecture held on the Chicago area applied mathematics seminar.

The function u is called weak solution of the differential equation

$$(1.3) - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{i} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) \right) + a \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) = f + \sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}$$

in Ω , satisfying on the boundary the condition u = 0.

Denoting by (w^*, u) the pairing between B^* and B, we can define an operator $T: B \to B^*$, putting

$$(Tu, v) \stackrel{\text{df}}{=} \int_{\Omega} \left(\sum_{i=1}^{n} a_{i} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) \frac{\partial v}{\partial x_{i}} + a_{0} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) v \right) dx .$$

Because $\int_{\Omega} f_0 v \, dx - \int_{\Omega} \sum_{i=1}^{n} f_i(\partial v/\partial x_i) \, dx = (f, v)$, the equation (1.2) is reduced to the problem of solving the equation Tu = f.

Example 2. Let us consider the Hammerstein's integral equation

(1.4)
$$u(x) - \lambda \int_{M} K(x, y) f(y, u(y)) dy = w(x),$$

where the solution is supposed in $L_2(M)$, M being a compact subset of R_n , $w \in L_2(M)$, f(y, u) is a continuous function on $M \times R_1$, satisfying the growth condition $|f(y, u)| \le c(1 + |u|)$. We suppose $\int_M \int_M K^2(x, y) \, dx \, dy < \infty$. If $(Tu)(x) \stackrel{\text{df}}{=} u(x) - \lambda \int_M K(x, y) f(y, u(y)) \, dy$, then $T: L_2(M) \to L_2(M)$ and the problem is reduced to the solution of Tu = w.

2. Borsuk type theorem. A mapping T is said to be bounded if the image of bounded set is bounded and it is said to be demicontinuous, if from $u_n \to u$ (strong convergence) follows $Tu_n \to Tu$ (weak convergence).

Theorem 1. Let $T: B \to B^*$, where B is a reflexive space, be a bounded, demicontinuous mapping. Let $T_t(u) = T(u) - t T(-u)$ for $0 \le t \le 1$. Let for $0 \le t \le 1$, the condition (S) be satisfied:

$$(2.1) if u_n \to u and (T_t(u_n) - T_t(u), u_n - u) \to 0,$$

then $u_n \to u$, and for $f \in B^*$ the condition

$$(2.2) {}^*T_tu - (1-t)f \neq 0 for ||u|| = R > 0, 0 \le t \le 1.$$

Then there exists a solution of Tu = f.

Let us remark first that the above solution is unique if, for example, the operator T is strictly monotone: $u \neq v \Rightarrow (Tu - Tv, u - v) > 0$.

Theorems as above are based on the concept of monotone operators, and there is a large amount of literature on this subject, compare, for example, M. I. VIŠIK [11],

F. E. Browder [1], J. Leray, J. L. Lions [6], G. J. Minty [7]. The concept using Borsuk's theorem was recently used in the paper of D. G. DE FIGUEIREDO, CH. P. GUPTA [3] and elsewhere.

The main ideas of the proof of Theorem 1: First, if $B=R_n$, then the degree $(T_1(u), B(0, R), 0)$ is an odd integer by Borsuk's theorem, hence by homotopy, this is true for T(u)-f, hence, there exists $\|u\| < R$ such that Tu=f. If $F \subset B$ is a finite dimensional subspace of B and ψ_F is the injection of $T \to B$, ψ_F^* being its dual mapping, then for $T_F \stackrel{df}{=} \psi_F^* T \psi_F$, it can be proved by contradiction existence of a F such that if $F' \supset F$, then $T_{F'}(u)-tT_{F'}(-u)-(1-t)\psi_{F'}^*$, $f \neq 0$ for $\|u\| = R$, $u \in F'$, $0 \le t \le 1$. Hence for every $F' \supset F$, there exists $u_{F'} \in F'$ such that $T_{F'}u_{F'} = \psi_{F'}^* f$. Let us put $M_{F'} = \{u_{F''} \mid F'' \supset F'\}$. The set of $M_{F'}$ has finite intersection property. If $\overline{M}_{F'}$ is the closure in the weak topology, then $\bigcap_{F'} \overline{M}_{F'} \ni u$. If w, $u \in F'$ for F' such chosen, then there exists $u_n \in M_{F'}$, $u_n \to u$ and because of $\lim_{n \to \infty} (Tu_n - Tu, u_n - u) = \lim_{n \to \infty} (Tu_n, u_n - u) = \lim_{n \to \infty} (Tu_n, u_n - u) = 0$, $((Tu_n, u_n - u) = (f, u_n - u)$ follows from the definition of $T_{F'}$) the condition (2.1) implies $u_n \to u$, what, in virtue of the demicontinuity of T, gives the result. We have clearly:

Consequence 1. If the operator T is coercive:

$$\lim_{\|u\|\to\infty}\frac{(Tu,u)}{\|u\|}=\infty, \quad then \quad T(B)=B^*.$$

This is because $(T_t u, u) \ge c(||u||) ||u||$, with $c(s) \to \infty$ for $s \to \infty$.

Consequence 2. If the conditions of theorem 1 are satisfied and T is odd: T(-u) = -T(u) and if T is weakly coercive: $\lim_{n \to \infty} ||Tu|| = \infty$, then $T(B) = B^*$.

Let us consider the following class of operators: first if for $\kappa > 0$ and every t > 0: $A(tu) = t^{\kappa} A(u)$, then A is called κ -homogeneous.

An operator S is asymptotically zero if for $\kappa > 0 \lim_{\|u\| \to \infty} \|Su\|/\|u\|^{\kappa} = 0$.

We have the following Fredholm alternative:

Theorem 2. Let T = A + S, where A is demicontinuous, \varkappa -homogeneous, satisfies the condition (S) (i.e. if $u_n \to and$ $(A(u_n) - A(u), u_n - u) \to 0$, then $u_n \to u$), S is demicontinuous, asymptotically zero (with the same \varkappa as for A) and T is bounded odd and satisfies the condition (S). Then the range of T is all of B^* if $Au = 0 \Rightarrow u = 0$. In this case, for every solution,

$$||u|| \le c(1 + ||f||^{1/\kappa}).$$

If (2.3) is true for every solution, then $Au = 0 \Rightarrow u = 0$.

Theorems of this type are recent. It seems the first paper is due to S. I. POCHOŽAJEV [10] and to the author [8]. For further results, compare F. E. BROWDER [2] and the forthcoming paper of J. Nečas [9]; compare also M. Kučera [5].

Proof of Theorem 2:

(i) If (2.3) is true and there exists $u_0 \neq 0$ such that $Au_0 = 0$, then for $u = tu_0$:

$$||u_0|| \le c \left(\frac{1}{t} + \frac{||S(u_0t)||^{1/\kappa}}{t||u_0||}\right) ||u_0|| \to 0$$

which is a contradiction.

(ii) Let $Au = 0 \Rightarrow u = 0$. Then (2.3) is true: if not, there exists a sequence $||u_n|| \to \infty$ such that

(2.4) *
$$||u_n||^* > n(1 + ||Tu_n||)$$
 and putting $v_n = \frac{u_n}{||u_n||}$,

we can suppose $v_n \to v$ and we obtain from (2.4) $Av_n \to 0$ and using (S) condition: $v_n \to v$, hence ||v|| = 1 and Av = 0 which is a contradiction.

- (iii) (2.3) implies (2.2), and (2.1) is satisfied because $T_t(u) = (1 + t) T(u)$.
- 3. Back to the applications. Let us remark first that it is only a question of introducing enough of indices to treat general systems instead of one partial differential equation as we will do; there is no essential difference.
 - I) We consider first the problem:

(3.1)
$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial u}{\partial x_{j}} \right) - \lambda a_{0} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) = f_{0}(x) + \sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}$$

with $a_{ij} \in L_{\infty}(\Omega)$, $\sum_{i,j=1}^{n} a_{ij} \xi_{i} \xi_{j} \ge c |\xi|^{2}$. Let us suppose

(3.2)
$$\left| \frac{1}{t} a_0(x, t\xi) - \sum_{i=0}^n b_i(x) \xi_i \right| \leq c(t) \left[\left(\sum_{i=0}^n \xi_i^2 \right)^{1/2} + 1 \right]$$

with $c(t) \to 0$ for $t \to \infty$, $b_i \in L_{\infty}(\Omega)$. The condition (3.2) implies immediately that $Ru \stackrel{df}{=} a_0(x, u, \partial u/\partial x_1, ..., \partial u/\partial x_n) - \sum_{i=1}^n b_i(x) \partial u/\partial x_i - b_0(x) u$ satisfies the condition $\lim_{\|u\|\to\infty} \|Ru\|_{L_2}/\|u\|_{W_2(\Omega)} = 0$. Supposing $a_0(x, -\xi) = -a_0(x, \xi)$ and defining

$$(Au, v) \stackrel{\mathrm{d}f}{=} \int_{\Omega} \sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \, \mathrm{d}x \,, \quad (Su, v) \stackrel{\mathrm{d}f}{=} -\lambda \int_{\Omega} a_0 \left(x, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n} \right) v \, \mathrm{d}x \,,$$

we obtain in virtue of the fact the imbedding $W_2^{(1)}(\Omega) \to L_2(\Omega)$ is completely continuous, that Su is a completely continuous operator from $\mathring{W}_2^{(1)} \to (\mathring{W}_2^{(1)})^*$. Because A

and S above defined satisfy with $\kappa = 1$ the conditions of the theorem 2, this altogether gives by theorem 2 this result:

For every $f_i \in L_2(\Omega)$, i = 0, ..., n, there exists a solution of (3.1) with u = 0 on $\partial \Omega$ and for every solution, we have $||u||_{W_2(1)} \le c(1 + ||f_0||_{L_2} + \sum_{i=1}^n ||f_i||_{L_2})$ if and only if λ is not an eigenvalue for the linear problem

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial u}{\partial x_{j}} \right) - \lambda \sum_{i=1}^{n} \left(b_{i}(x) \frac{\partial u}{\partial x_{i}} + b_{0}(x) u \right) = 0, \quad u \in \mathring{W}_{2}^{(1)}(\Omega).$$

II) If we consider a nonlinear problem with $m \neq 2$, then we suppose:

(3.3)
$$\left| \frac{a_i(x, t\xi)}{t^{m-1}} - A_i(x, \xi) \right| \leq c_i(t) \left(1 + |\xi|^{m-1} \right), \quad i = 0, ..., n,$$

where $A_i(x, \xi)$ satisfy the conditions (1.1) and $c_i(t) \to 0$ for $t \to \infty$. Let $A_i(x, \xi)$ and $a_i(x, \xi)$ be odd in ξ and $A_i(x, t\xi) = t^{m-1}A_i(x, \xi)$, t > 0. We shall suppose for $a_i(x, \xi)$ and $A_i(x, \xi)$ the conditions (we write them only for A_i): if $[\xi_1, ..., \xi_n] \neq [\xi'_1, ..., \xi'_n]$ then

(3.4)
$$\sum_{i=1}^{n} \left(A_i(x, \xi_0, \xi_1, ..., \xi_n) - A_i(x, \xi_0, \xi_1', ..., \xi_n') \right) (\xi_i - \xi_i') > 0$$

and

(3.5)
$$\sum_{i=1}^{n} A_{i}(x, \xi_{0}, \xi_{1}, ..., \xi_{n}) \xi_{i} \geq c_{1} \sum_{i=1}^{n} |\xi_{i}|^{m} - c_{2} |\xi_{0}|^{m}.$$

For to apply theorem 2, we can easily verify (for details compare J. LERAY, J. L. LIONS [6]) the hypothesis eventually with the exception of the condition (S): for to see this, let $u_k \to u$ in $\mathring{W}_m^{(1)}(\Omega)$. We have first by the complete continuity of the imbedding $W_m^{(1)}(\Omega) \to L_m(\Omega)$: $u_k \to u$ in $L_m(\Omega)$. Choosing a subsequence, if necessary, still noted u_k , we have $u_k(x) \to u(x)$ almost everywhere. By hypothesis,

$$\lim_{k \to \infty} \int_{\Omega} \sum_{i=1}^{n} \left(a_{i} \left(x, u_{k}, \frac{\partial u_{k}}{\partial x_{1}}, \dots, \frac{\partial u_{k}}{\partial x_{n}} \right) - a_{i} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) \right)$$

$$\left(\frac{\partial u_{k}}{\partial x_{i}} - \frac{\partial u}{\partial x_{i}} \right) dx + \int_{\Omega} \left(a_{0} \left(x, u_{k}, \frac{\partial u_{k}}{\partial x_{1}}, \dots, \frac{\partial u_{k}}{\partial x_{n}} \right) - a_{0} \left(x, u, \frac{\partial u}{\partial x_{1}}, \dots, \frac{\partial u}{\partial x_{n}} \right) \right)$$

$$\left(u_{k} - u \right) dx = 0.$$

The second member tends to zero, hence also the first, but in virtue of (3.4) putting

$$f_k(x) = \sum_{i=1}^n \left(a_i \left(x, u_k, \frac{\partial u_k}{\partial x_1}, \dots, \frac{\partial u_k}{\partial x_n} \right) - a_i \left(x, u_k, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n} \right) \left(\frac{\partial u_k}{\partial x_i} - \frac{\partial u}{\partial x_i} \right) \right),$$