

Werk

Label: Article **Jahr:** 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0097|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A NOTE ON WEAKLY BOREL MEASURES

ZDENA RIEČANOVÁ, Bratislava (Received March 16, 1970)

In [1] S. K. Berberian compared several of the commonly used definitions of "regular measure". In Theorem 3 he proved that

if ϱ is a finite measure on the weakly Borel sets of a locally compact Hausdorff space X, the following conditions are equivalent:

- (A) ϱ is inner regular,
- (B) ϱ is biregular,
- (C) ϱ is sesquiregular,
- (D) ϱ is outer regular, and there exists a Borel set E such that $\varrho(X-E)=0$.

In the present paper we show: 1. the assumption of the local compactness of X can be dropped, 2. the conditions (A) and (D) can be replaced by weaker ones, 3. the finiteness of ϱ can be replaced by (U, σ) -finiteness.

Let X be an arbitrary nonvoid set of elements. Let S be the σ -ring of subsets of X, and C and U nonempty subfamilies of S. Let μ be a measure defined on S. Measure μ is said to be inner C-regular on S if

$$\mu(A) = \sup \{ \mu(C) : A \supset C \in C \}$$
 for all sets $A \in S$,

outer U-regular on S if

$$\mu(A) = \inf \{ \mu(U) : A \subset U \in \mathbf{U} \}$$
 for all sets $A \in \mathbf{S}$,

and (C, U)-regular on S if it is both inner C-regular and outer U-regular on S.

Troughout the paper X denotes an arbitrary Hausdorff space, C the family of all compact subsets of X, D the family of all closed subsets of X and U denotes the family of all open subsets of X. By S(C) and S(D) we denote the σ -rings generated by C and D respectively.

A measure μ on S(D) is said to be (U, σ) -finite if $X = \bigcup_{n=1}^{\infty} U_n$, $U_n \in U$, $\mu(U_n) < \infty$ (n = 1, 2, ...).

Remark 1. If μ is a σ -finite and outer **U**-regular measure on S(D) then μ is (U, σ) -finite. In fact, if $E \in S(D)$ and $\mu(E) < \infty$ then there exists a set $U \in U$ such that $U \supset E$ and $\mu(U) < \infty$.

We compare the following conditions:

- (a) $\mu(U) = \sup \{\mu(D) : U \supset D \in \mathbf{D}\}\$ for all sets $U \in \mathbf{U}$ and there exists a set $Y \in \mathbf{S}(\mathbf{C})$ such that $\mu(X Y) = 0$,
 - (b) $\mu(U) = \sup \{\mu(C) : U \supset C \in C\}$ for all sets $U \in U$,
 - (c) μ is inner C-regular on S(D),
- (d) μ is sesquiregular on S(D) (i.e. μ is outer **U**-regular on S(D) and satisfies the condition (b)),
 - (e) μ is (C, U)-regular on S(D),
- (f) μ is (**D**, **U**)-regular on **S**(**D**) and there exists a set $Y \in S(C)$ such that $\mu(X Y) = 0$,
- (g) μ is outer **U**-regular on S(D) and there exists a set $Y \in S(C)$ such that $\mu(X Y) = 0$,
- (h) $\mu(D) = \inf \{ \mu(U) : D \subset U \in U \}$ for all sets $D \in D$ and there exists a set $Y \in S(C)$ such that $\mu(X Y) = 0$.

Theorem 1. If X is an arbitrary Hausdorff topological space and μ is a (U, σ) -finite measure on S(D), the conditions (a)-(f) are equivalent.

Proof. (a) \Rightarrow (f): Let $E \in S(D)$ such that $E \subset U_0 \in U$, $\mu(U_0) < \infty$. The formula $\mu^0(A) = \mu(A \cap U_0)$ defines a finite measure on S(D). If $U \in U$ then

$$\mu^{0}(U) = \mu(U \cap U_{0}) = \sup \{\mu(D) : U \cap U_{0} \supset D \in \mathbf{D}\} =$$

$$= \sup \{\mu^{0}(D) : U \cap U_{0} \supset D \in \mathbf{D}\} \le \sup \{\mu^{0}(D) : U \supset D \in \mathbf{D}\} \le \mu^{0}(U).$$

By ([2], Theorem 8, p. 43, or example 3, p. 45) μ^0 is (**D**, **U**)-regular on **S**(**D**). Hence

$$\mu(E) = \mu^{0}(E) = \sup \{\mu^{0}(D) : E \supset D \in \mathbf{D}\} = \sup \{\mu(D) : E \supset D \in \mathbf{D}\}$$

and

$$\mu(E) = \mu^{0}(E) = \inf \{\mu^{0}(U) : E \subset U \in \mathbf{U}\} = \inf \{\mu(U \cap U_{0}) : E \subset U \in \mathbf{U}\} \ge \inf \{\mu(U) : E \subset U \in \mathbf{U}\} \ge \mu(E).$$

Let A be an arbitrary set of S(D). From the (U, σ) -finiteness of μ it follows that $A = \bigcup_{n=1}^{\infty} (A \cap U_n)$, where $U_n \in U$, $U_n \subset U_{n+1}$ and $\mu(U_n) < \infty$, n = 1, 2, ... According to what was said above, $A \cap U_n$ and hence also A (see the proof of Theorem 3, [5], p. 220) are (D, U)-regular sets according to μ . Hence μ is (D, U)-regular on S(D). $(f) \Rightarrow (e)$: Let $E_0 \in S(C)$ such that $E_0 \subset C \in C$. Then

$$\mu(E_0) = \sup \{\mu(D) : E_0 \supset D \in \mathbf{D}\} = \sup \{\mu(C) : E_0 \supset C \in \mathbf{C}\},$$

since $D \in \mathbf{D}$, $D \subset E_0$ implies $D \in \mathbf{C}$.