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INTRODUCTION

In §1. a new kind of a functional space is defined, the space W, () of functions, the
first derivatives of which are measures on @ and the properties of this space are in-
vestigated. In §2. we use results from §1. to define the space W,'j( Q), the space of func-
tions, the k-th derivatives of which are measures on Q.

Let Q = Ey be a bounded domain with the boundary of the class C!. Generally
speaking, we can say that the space W,({) is the completing of Sobolev’s space
W}(Q) in weak convergence, by this weak convergence we mean the weak convergence
of the function together with weak convergence of their derivatives. Now, it can be
seen that element of W; is not already a function on Q in usualy sense: if two weak
convergent sequences of functions from W} has the same limit function in L, (in the
sense of weak convergence in L,), then their derivatives need not have the same weak
limit in L,, these limit measures can be different on 9Q.

The space W,({Q) is the space of all (N + 1)-couples (ao, ®;, ..., ay) of measures
on @, for which there exists a sequence of functions u, € Wj(£2) such that u, — o,
and at the same time du,[dx; — a;. It will be seen that «, must be absolutely con-
tinuous with respect to Lebesgue measure and hence «, has the density u, which is
integrable on Q. The derivatives of this function u in the sense of distributions are
then the restriction a;qo. Further there exists uniquelly determined measure e
€ L,(022) (we will call it the trace of (o, . .., &y) such that the Green theorem holds in
this form

J. qov,dﬂ=fu(p,‘dx +J‘(pdai, Vo e C'(Q).
0 Q o

The following important assertion is true:
If we take the function u € L,(f2) and if for any measures «,, ..., ay € L,(%) there
exists the measure B € L,(092) such that Green theorem holds, then (u, ay, ..., ay) €
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€ W,(&). It will be seen that the element (u, o;) € W, is uniquelly determined by the
function u and by the trace f e L“(aﬂ). In theorem 3 there are discussed necessary
and sufficient condition for u and B to define an element from W,. It will then be
shown that B e L,(92) can be arbitrary and only some conditions must be supposed
about the function u. The trace p depends continuously and weakly continuously
on (u, @) € W,. Further there are proved the theorems on imbedding into L (%) and
the theorem on equivalent norms. The unit ball in W, is weakly compact. A so called
inner trace of (u, «;) € W, is defined as the trace of the element (u, &) € W, where &,
is the restriction «; o, which is uniquelly determined by u. The side of an element
(u, a;) is, on the contrary, determined by the restriction a;;,, and equals the difference
between the trace and the inner trace.

In the next sections the possibility of joining together of two functions is in-
vestigated, which are defined on the neighbouring domains. We can join together
two such functions, if they have the same trace on the common part of the boundary.
The function (u, «;) € W, can be extended to the greater domain, if the trace of this
function is absolutely continuous with respect to Lebesgue measure on Q. By
suitable extentions it is possible to define the regularisation of element (u, a,) € W,
and by this regularisations we are able to prove that for each (u, «,) € W, there
exists a sequence of the functions u, € W,(Q) such that

(s Uy -5 Upgy) = (u, g, -y )
and moreover lim ||u, |, = [, a;)|w,s -
n—* o

In §2. the space W({2) is defined as the space of functions, the (k — 1)-th derivatives
of which belong to the space W,. The analogic properties are investigated there as
was done for the space W;, but the situation is more complicated, namely for exten-
sions of elements from W}.

The reason for investigation of these spaces is following. We can consider a func-
tional of the type of minimal surface

I(u, Q) = J‘ fOeuyugy,.u,)dx, ueWi(Q).
2

Let f(x, u, p) be a continuous and nonnegative function, which is convex in the
variable p = (py, ..., py) and which satisfied the condition

alp| — 2 Sf(xu,p) S eslp| + ca; YV, u,p; cpp.ce 2 0.

We will look for minimum of this functional on the set of all u € W}, u = u’ on 9Q;
u’ € L,(0R) fixed. There js one great difficulty, we cannot use direct methods of the
calculus of variations because the space W} does not have a weakly compact ball.
But the space W, has a weakly compact ball and we can extend the function I to the
whole space W,f. Theorem 6 on weak compactness of the ball in W: together with
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Theorem 2 that the trace f of element (u, a;) € W, depends weakly continuously
on (u, ;) are then basic for using of the direct method. Also futher properties of the
space W,} are very useful for investigation of this variational problem. By this
method we obtain weak solution in W, for each boundary condition u’ € L,(0€2) and
for domains , which does not satisfy the usual condition of convexity.

We can also consider the analogic variational problem with derivatives to the k-th
order. On this problem there were no results till now. These variational problems
will be investigated in next papers.

Finally, the author wishes to thank dr. J. KACUR for his kindness in reading the
whole text and for valuable suggestions and particulary wishes to thank Professor

J. NECAas for the leading of his aspiranture and for helpful conversations during the
course of this work.

Notation

Q — a bounded domain in E, with its boundary 09 belonging to C! class,

v = (vy, ..., vy) — exterior normal to Q,

c — a constant which depends only on €,

C(E) - the space of all continuous functions defined on the compact E < Ey,

Wf,(f)) — Sobolev’s space of functions possessing distributive derivatives up to the
k-th order in L,(€),

|oc] — total variation of the measure a,

L(E) - the Banach space of all Borel measures (o-additive, general measures)
defined on the Borel set E = Ey and satisfying |||, = |¢| (E) < o,

|E| — N-dimensional Lebesgue measure of the measurable set E < Ey,

ds — (N = 1)-dimensional Lebesgue measure,

[& @ da — Riemann-Stieltjes’s integral, where E is a compact in Ey, ¢ € C(E) and
a € L(E), :

ug, a)p — the restriction respectively of a function u and of a measure a on the
Borel set E < Ey,
K*x) — N-dimensional mollifier.

Important agreement

Each absolutely continuous measure (with respect to the N-dimensional Lebesgue
measure) will be identified with its density with respect to Lebesgue measure, i.e.,
a € L,(2) will be identified with the function u € L,(£2) such that

J’<pda=j.<pudx, Vo e C(Q2).
n 0

o
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Each absolutely continuous measure f§ € L,(0Q) will be identified with its density
with respect to the measure dS on 9@ i.e. with such function u’ € L,(6Q) that

J (pdﬂ=f ou' dS, Voe C(0Q).
o0 o0

This identification will be used throughout the whole paper.

§1. SPACE W,
1. Definition of spaces W, and M*

First of all let us recall some well-known notions and theorems (see [1]).

Let E be a compact in Ey. A sequence o, € L,(E), n = 1,2, ... is said to be w*-
convergent to « € L,(E), if

J'qida,,—»J.(pda, Vo € C(E) .
E E

This convergence will be denoted by —.
The following assertions hold (see [1]):
1) «, — « in the space L,(E) iff
(i) there exists k > 0 such that [a,[L,z) < k,n = 1,2, ...
(i) fz o da, - [ @ do for each ¢ € X, X being a dense subset of C(E).
2) Ifa,e L(E),n = 1,2, ... are from a ball in L (E), then there exists a subsequence
{a,,}, which is w*-convergent in L (E).
3) If @, ~ e in L,(E), then [j«[ 1,5 < I lotall e

4) The space L,(E) is the dual space to C(E) with respect to the duality a«(¢) =
= [r ¢ da, e L,(E), ¢ € C(E).

Definition 1. W,/(Q) is the space of all (N + 1)-tuples (ay, ..., ay) € [L,(2)]¥**
for which a sequence u, € Wi(Q), n = 1, 2, ... exists such that

(1) Uy = Ao » unx; - a;

in the space L(%), i = 1, ..., N, where u,,, = du,[/0x; and the functions u,, u,,, are
identiﬁed with the absolute continuous measures according to the agreement.

,,(Q) is the space of all (a, ..., ay) € [L(@)]¥*! for which there exists u, €
eWi(Q), n = 1,2, ... satisfying (1).

If the w"‘-convergenoe by components is introduced in the space [L, (Q) afiz
then Wl is the “‘closure” of W} with respect to the w*-convergence and W is the
,,closure” of W}. At the same time, W} is imbedded canonically into [L, (ﬂ)]” *1 by:
W W o (st oo ) € [L (D
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Theorem 1. Suppose (o, ..., ay) € Wy(2). Then
(1) ;o = Bo[0x;, i = 1,..., N in the sense of distributions,
(ii) the measure ay is absolutely continuous with respect to the Lebesgue measure.
Let us denote its density by u € L,(Q),
(i) there exists a unique measure B € L,(0Q) such that Green’s theorem holds:

() .[ qov,dﬂ=J'u(pxidx +Iqoda,, YVoeC!(Q), i=1,..,N.
0 Q Q

The measures a, are called the derivatives of the element (u, «;) and the measure f
is called the trace of the element (u,a,). Analogously to the space W1(Q), the elements
of W4(Q) are called functions.

Proof. According to the definition of W5({2) there exists a sequence u, € Wi(2),
n = 1,2, ... such that (1) is satisfied. Let u, € L,(92) denote the traces of u,. Con-
sidering [2], we obtain that the functions u, satisfy Green’s theorem

(3) j u,pv;dS = f U, dx + J' u,p,, dx, VoeCYQ).
a9 2 2

If we substitute functions from C§(€2) for ¢ in (3), we obtain with respect to (1)

j¢,‘dao= —j(pda,, =N
n n

and assertion (i) is proved.
With regard to (1), there exists a constant k > 0 such that

(4) "u ”wll(g) <k, n=12,...
Theorems of imbeddings imply
(5) "u;“lq(ﬂﬂ) é Ck ’ "un"L.(ﬂ) é Ck, I/q =/ 1 - l/N , n= 1, 2, .

There exists a suitable subsequence {u, }, a measure g e L,(0R) and u € L(Q) such
that

(6) u, =B in L(0Q), u, —u in L(Q).

Due to (1) u,, — oo in L,(£) and if we pass to the limit with k — co we obtain
J. o day =J pudx, VoeC(f).
I 0

Thus, assertion (ii) is proved.

Now, we pass to the limit in Green’s theorem (3) for u,,. With regard to (6) we
obtain Green’s theorem for (u, a4, ..., ay). It can be seen from (2) that the measure 8
is independent of the sequence {u,}.
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The norm in the space W,({) is defined by
N
I, ay, ..., “N)”W..*(m = | ucer +l_=Zl llote]| iy -

In the space W;({2) we introduce w*-convergence by components, i.e. (u,, tty;) =
- (u, ;) in W(Q)iff u, = u, @,; = o;in L,(&), i = 1, ..., N. Now, we shall describe
the functions of W,({2) explicitely using Green’s theorem (2) for the purpose.

Definition 2. M'(£) is the space of all (N + 2)-tuples (u, a4, ..., ay, B) for which
(i) ueLy(Q), ay, ...,y e L(2), Be L, (09),
(ii) (2) holds for each ¢ € C'(2).
Let us denote M'(2) = {(u, a;, B) € M'(Q2); B = 0}. The norm in the space M*(&)
is defined by

N
"(“’ % ﬁ)"w(m = "“"Ln(ﬂ) +s§1 "“i"L,.m)-

From Theorem 2 it will be clear that ||8]|,(oq) can be omitted in the formula for the
norm it M*. It can be seen from (2) that the measure  is uniquely determined by the
(N + 1)-tuple (u, ;). Therefore (u, a;) will be written sometimes instead of (u, «;, B).
In this sense W}({2) is a subset of M'(£2) and W (&) = M*(£2). One of the aims of the
next section is to prove equalities in these inclusions.

Similarly, in view of (2), the measures ay, ..., ay are uniquely determined by the
pair (u, f). Thus (u, ) can be written instead of (u, a;, B). The function u uniquely
determines the measures a; in €, i.e. the measures «;,o. Namely, a;q are distribution
derivatives of u.

The space W}(€) is canonically imbedded into W,(2) by:

1 1
ueWi - (u,uy, ..., u,)eW,

in the sense of our agreement. We introduce w*-convergence in the space M'(&2) as
the w*-convergence of the first (N + 1) components. '
2. Decomposition of the unit

Definition 3. By the product of y € C(E) (E < Ey being a compact) and of a measure
@ € L,(E) we understand the measure & = . a € L,(E) defined by

)] j¢d&=J¢wda, Yo € C(E).

E E
By the product of ¥ € CY(2) and (u, a;, f) e M'(2) we understand a function
(@, &, B) = Y(u, a;, B) for which # = uy, & = uy,, + Yo, B = Y0P With respect

to (7) and to our agreement.
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It can be seen easily that y/(u, «;, B) satisfies (2) and hence it belongs to M'(Q). At
the same time there is
®) W, 2 Blasin < (N + 1) [¥lcra - (4 @i B)ascay -

Suppose the domain Q to be of the class C. There exists a finite number of open
cubes K, in Ey, r = 1, ..., R covering the boundary dQ. Let us denote Q, = K, n Q.
R
There exists a domain Q,, 3, = Q such that Q = |J Q,.
r=0

For each r = 1 a linear orthogonal transformation can be carried out such that K,
is of the form K, = {x € Ey; 0 < x; < b} in the new variables, where b is the edge
of the cube K,. At the same time a part of boundary 0Q n K, can be described by
xy = a(X,, ..., Xy_,) where a is a function of the class C'. The cubes K, and the trans-
formations can be chosen in such manner that

9) w2c>0
on 02 N K, in the new variables.

For the decompsition Q= L‘; Q, there exist functions y, € C'(Q) such that y, = 0,
suppy, © 2, L 0Q, iv, = 1’=o(;1 Q. Suppose (u, a;, f) e M'(Q). Then (u, «;, f) =
= io(u,, iy B, wh;::

(10) (ups 2o B,) = 7(u, @i, B) e MY(Q) .
Due to (8) we obtain

"(“n %pi ﬂr)"w(?n = c"(“’ % ﬂ)||M.(5) ’

R
(11) (s o, B)|[ercay < € ;) (s @ris B sercay -
At the same time we obtain
. R
(12) 1Belcucom < €llBlrucem > |Blrueny = C'go"ﬁr"hwm-

The function (u,, a,;, B,) belongs after the application of a linear orthogonal transfor-
mation again to M'(£) and (11), (12) are satisfied.

3. The direct and inverse theorems on imbedding into the traces

First of all, we must regularise the measure f € L,(02). Let us set for x € Ey

(13) R¥(x) = e FIVU=M) x| <k,

xh¥~1

RYx) =0, [x| = h.
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The constant x is chosen so that

j Rh(xl,..., xN_l, 0) dxl,-.., de—l = 1
ENn-1

holds.
Suppose ¢ € C(0Q), B € L,(09). Let us set

™

(14) Ui(x) = | R'(x — y)dS(y),
(15) o) = [ Rix = y) oly) ds(),
(16) uy(x) = ”mR"(x — y)dB(y) .

Now, we prove a lemma which will turn out very useful.

Lemma 1. (i) There exists a function c(h), h > 0 depending only on the domain Q
and satisfying

max [,(x) — 1| < ¢(h), limc(h) =0,
xe02 h—0
(i) @, = ¢ in C(09),
(iii) u, — B in L(0Q) and at the same time
lenllzicom = 18] cocom -

Proof. First we prove that lim min ¢, = 1. Easily we find out that i, is continuous
h—0 o2

on Q. For each h > 0 there exists x, € dQ such that min y,, = ,(x,). Let us suppose,
on

on the contrary, that lim y,(x,) < 1. Thus there exist h, - 0 and &, > 0 such that
h—0

x,,"—rxpeaﬂ, l/l,,n(x,,n)é 1—30, n= 1,2,...

There exists a cube K and a suitable linear orthogonal transformation such that
0Q N K is described in new variables by xy = a(x’), x' = (x, ..., Xy-,) and at the
same time

(17) x0€dR K, a.xg)=0, i=1.. ,N-1.

For large n there is
Wn(5n) = j Ri(si, = v'» a(si,) — a() (1 + [Va(y)[?) dy’ .
En-1
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Applying the substitution y’ — x; = h,(z' — x,) we obtain

(19) ) = | R = i [ash, + bl = %) = afxi)].

En-y n

(1 + |Va(x;, + h(z' — x; )|V dz’ .

For 2’ fixed there holds with regard to (17) and to the fact that a e C*

hi[a(x:'... + (2 = x3,)) — a(x;,)] =

-1
Zn a.(xn, + 1h(z' — x;)) (z — x;,,)dt > 0.

n— o

1
0 i=
Now, let n increase to infinity in the integral (18). Thus we obtain lim ¥, (x, ) =

= [gy., R'(z' = x5, 0)dz’ = 1 which is a contradiction.

Similarly we prove the inverse inequality im max y, < 1. We can set c(h) =
K0 00

= max |y, — 1| and thus assertion (i) is proved.
0

|oalx) — o(x)| =

j R =) [o00) - (9] 4S0) +

=<

" [ j R ) ds() - 1] o(x)

< (1 + c(h) 6(h) + ||| can c(h)

where 5(h) is the modul of continuity for ¢. Hence we conclude (ii).

j uhp dS = j | j RY(x — 3) o(x) dA(y) dS(x) =
on onJ 09

= I ou(y) dB(y) - f o(y) dB(y) -

E2) =0 Jaa

This fact implies u, — B and hence ||B]|,,o0) < lim |31, 00y

. h—-0

oo = j Jug| 45 < j j Ri(x — y) d|B] (») dS(x) <
0 024 092

< Ln%()’) dlﬂl () = (1 + () || L,0m -

Lemma 1 is proved.

18



Theorem 2. (i) The imbedding M'(Q) — L,(0Q) is continuous, i.e. for each
(u, @, B) € M*(D) there is
1BlLuom = €[(us @i Bl -
(ii) The imbedding M*(Q) — L,(0Q) is w*-continuous, i.e. (4, oy, B,) = (4, @;, B)
in M'(Q) implies that
B.— B in L(0Q).
(iii) For each measure B € L,(0Q) there exists a function (u, «;) € W,(2) such that B
is the trace of (u, «;) and
I, @)lwa@ < c[Blleuom -

Proof. Suppose (u, ;, f) € M*(£2). We conclude from the section on decomposi-
tion of the unit that it suffices to prove assertion (i) for a domain of the form @ = @,
r=1,..,R and for a function (u, a;, f) = (u,, «,;, B,) Whose support is in Q, U
U (02 n K,). Let us set

B={ge Cl(ag nK,); "q’"cwnni,) < 1}.

An arbitrary ¢ € B will be extended on £, as a constant on the lines parallel to the
coordinate axis xy (in the new variables). For such ¢ there holds

I ¢deﬂ=I¢,Nudx+J. qodaN=I o day .
220K, o, o 2,

According to (9) there holds vy = ¢ > 0 and hence we conclude

1Plesoaces = 502 [9.48 5 cllw o, -
Qe

Thus, assertion (i) is proved.

Suppose (uy, &yis ) = (u, a;, f) in M(Q). Let us take ¢ e C'(©2) and substitute
it into (2).

I ov;dp, =I u,p,, dx +J ¢ da,; —»J. ue,, dx +I ¢ da; =J ov;dp.
o9 Q Q n=wo) g Q 2

The linear hull of the set of functions possessing the form @ ,qvi, @ € C(Q), i =
=1,...,N is a dense set in C(3R2). It is sufficient to prove that the norms of B,
n=1,2,... are bounded. (u,, @,) — (u, «;) implies that ||(u,, o,;)| a1 are bounded
and thus assertion (ii) will be proved by using assertion (i).

Suppose B € L,(02) and u;, € L,(0Q) is a function from (16). According to Gagliar-
do’s work [3] there exist functions u, € Wi(®), h > 0 such that u; is the trace of u,
and the estimate

(19) lun]woray = cflub]zicom
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is satisfied. Considering (iii) from Lemma 1 we conclude

(20) . lunllw, sy = |l Bllr,om

for small h > 0.
There exists a suitable subsequence {u, } and (u, «;) € W,(8Q) such that u, — (u, a;)
hp—0

n—*a
in Wj(Q). By limiting process in Green’s theorem for u, we conclude that (u, «;)
possesses the trace # and with respect to (20)

1C, @)l w, @y < Lim [lus, w1y < [B]z.c0m
u—*w

holds. Theorem 2 is proved.
From the next theorem it will be seen that the trace B of a function (u, a;, f) €
e M*({) is independent of the function u itself.

Theorem 3. Let us set for u € L,(Q)

(21) d[u] = sup {j ug,, dx
2

A pair (u, p) is from M'(Q) iff p € L(09), u € L,(2) and d[u] < c0. Moreover

(22) 1 Al < [lleuca + N(@[u] + [B]z.em) »

(23) d[u] < ¢|(u, B)|| s

hold. These facts imply in particular that (0, f) is in MY(@) for an arbitrary
B e L(00Q).

; 0eC(D), |olcw =1, i=1,...,N}.

Proof. We shall construct measures a; € L,(2) so that (u, a;, ) € M'(&2). For
¢ € C'(R) we set

j(pdd,-=Jl (ov,dﬂ—f up,,dx, i=1,..,N.
2 n Q

The measure ; is defined by this formula as a functional on C'(£). In order to prove
that «; is a measure, we must prove

sup{J‘ @ da;
2

For ¢ € C'(&), |@|ca < 1 there holds

U @ da,
2

i 0@, lolea 3 1} <.

< |8l zucomy + dlu] -




Hence the estimate (22) follows. On the contrary, let us suppose (u, a;, B) € M'(Q).
Then for ¢ € C'(Q), |¢| < 1 on @ there is

j ug,, dx J. pv;dp "'f ¢ do
Q Lo} Q

= [1Blleuom + loillzua = Cll(ws )| mray < o0

= <

4. The equality W, = M*
Let us set
(24) K*(x) = iNe PR | Ix] < &,
xh
K*x) =0, FEY
where x is a constant satisfying [, K*(x) dx = 1. Let us denote

(25) Sy = {x e Q; dist (x, 0Q) < h}.

Lemma 2. Let us suppose (u, a;, ) e M'(Q), i.e. B = 0. Then for each h >0
with h < c there holds

(26) j Ju] dx < e, ) aercn

Proof. We decompose the function (u, ;, 0) using the decomposition of the unit

R
(u,a) = Zo(u,, o,.)-
From Section 2 it is clear that it suffices to prove Lemma 2 in the case when Q =

=Q, (u,2) = (4, ), r =1,..., R and (u, @;) has its support in 2, U (6Q n K,).
First of all we prove the following assertion:

(27) ueLy(Sy) = J' |u| dx = sup { j updx; YeC(Sy, ¥lcsy < 1}.
Sn Q2

Let ¢ be a positive number. Then there exists Q' < S, &' < S, suchthat [, _o |u| dx<e.
Let us set

Yy=signu on Q, y=0 on Ey— Q.
Obviously [q |u| dx = [ uy dx holds. Let us set for k > 0

(28) W) = j K¥x — ) ¥(y) dy

21



For small X function y, belongs to Cg(S,). Then ¥, — { a.e. on Q' and

© Wesw S 1 j

Q2

uy, dx —»I uy dx .

k=0 Q'

For small k > 0 there holds
J. uy, dx gf uy,dx — ¢ gJ‘ uydx — 2 =
Sh Q' Q’

=J‘ |u|dx—2t:gJ. |u| dx — 3e.
Q' Sh

Now, we can prove Lemma 2. Let us take y € C'(Q) with y = 0 on Q — S, and
[¥]ca < 1. Let us denote

XN
o(x', xy) = J' W(x', &) dE .
0o
Then ||¢|lc@, < ch holds and with respect to (2) we obtain

I uy dx =j' up,, dx = —J ¢ day < ch|(u, ;)| mra) -
Sh Sh Sh

Theorem 4. (i) For each (u, «;) € M*(Q) there exist u,e Wi(Q), u = 1,2, ... such
that

(29) u,— (u,a;) in MY(Q),
(30) leaallwwiscoy < €ll(s @) aerca -

(ii) For each (u, a;) € M'(Q) there exist u, e W} such that (29) and (30) hold.
This fact imply the equalities M*(3) = W)(2) and M'(Q) = Wi (D).

Proof. We prove assertion (ii). Let us denote
(31) Q, = {xeQ; dist(x,0Q2) > h} =Q - §,.
There exist functions ¥, € C3'(2), h > 0 (h being small) with properties

(32) O0=yy<1 on 2, Y,=1 on 2, Y=0 on Sy,

max [f,. |-, i=1,..,N.
Q2

>0

Let us set

(33 uy(x) = j nK"(x — &) u(&) Yi(&) d¢ .
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Evidently u, belongs to Cg'(Q). We prove the inequality

(34) ]| i1y = |5 ) |aescay -

The assertion

[l ax s [ [ K0 - 0ol v azox s [ e

holds. With respect to (2) and (u, «;) € M* we obtain for x € Q

()= = f K - &) ue) o) ot =
= j K = 0) ) e 0 - j K = ), (0 0 =

= LK”(x' — &) u(®) Ve (&) ¢ + j‘ﬁK"(x = &) (&) daf$)

Further, we use Lemma 2 and assumption (32):
[ onel x5 [ aled @ + [ o e a2 <
Q Q Q

< [ «) sy + %j |u] d& < ef|(u, )] aercay
' San

which proves the estimate (34).
Easily we find out that u, — u in L,(Q). For ¢ e C(Q2) we obtain

J' g dx = j ) J‘ (s 8) 0(s) (e) 2) 4 .

‘[ Ki(x — &) o) dx » 0(&) in L)

and hence '
U nKh(x =9 e() d"] u(@) Ua(&) - u(@) 9(¢) ae.in Q, ie.
[ 6 06 a5 = [ (o) o) ax.

Suppose ¢ € C'(Q2). On account of (2) we have

J. Uy, @ dx = —J‘ Uy, dx — —Iuw,‘dx =I @ da;.
Q Q 2 2

The estimate (34) implies the assertion (29) and (ii) is proved.
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Suppose (u, a;, B) € M*(R2). Assertion (jii) from Theorem 2 implies that there exists
(u', «}, B) € W, (£). In the proof of the Theorem 2 we found u) € Wi(Q),n = 1,2, ...
satisfying with-respect to (20)

(35) up = (u', 05, f) in WD), |us|wicay = C|lB|L.co0) -

Function (42, a?, 0) = (u, a;, B) — (u?, i, B) belongs to the space M‘(Q) Making
use of Theorem 2 we obtain the estimate

(36) Iw?, cD)ao@ < ¢l )| -
On account of the assertion (ii) just proved there exist uZ € W ()
(1) - uw—~@ha,0) in MY(@), |u;]w, = | o) -
Relations (35), (36), (37) and Theorem 2 yield
ur + ul = (u,a) in MY (D)
lun + wzllwiscar < el @)llaercay -

5. Theorems on imbedding and on w*-compactness of the ball in W,}

Theorems on imbedding W, (£2) into L(Q) are the same as those for the space
wi(Q).

Theorem 5. Suppose (u, a;) € W, (2). Then u e L(Q) and the following estimate
is valid:
1

(38) ]z = ¢|l(us @) w,1@ > = =1-

2

The imbeding W, (@) — L(®) is compact for q* < q, ¢* 2 1.
Proof. According to Theorem 4 there exist u, € W' such that
= (w, o) in Wi(Q), [un]w, = Cll(w, ai)"Wu‘ -
On account of the theorem on imbedding W;'(22) — L,(®) we obtain

(39) [l = €l @) wa -
From the convergence u, — u in L,(£) and from (39) we have u € L,. It is sufficient
to choose u,, — i in Lygq, which implies u = i, u, — u in L(2).

Hence

]z, < lim u, |, < cf|(u, )]0
holds. :

Now we prove the compactness of the imbedding of W, into L,.. Let us suppose
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that the norms of (u,, a,;) € W, are bounded. Due to Theorem 2 there exist u,, € W'
such that

(40) U i (U o) in WS, |uwllwa Sc, mk=1,2..

For each n there exists a subsequence {u,, }m=1 Which is convergent in L., and it
must converge to u, € L., because u,; 55w 4, in L,(£). For each n there exists an
index m such that v, = u,, satisfies

1
(41) low = e = =
n

With respect to (40) there exists a subsequence {v,,} converging in L, (due to the
theorem on imbedding W, — L,.). This implies that the subsequence {u,,} is conver-
gent in L,. regarding (41).

Theorem 6. The space W, (&) is closed with respect to the w*-topology as a sub-
space of [L(@)]¥** (see Section 1). Any ball in the space W, (&) is compact in the
w*-topology. The same assertions hold also for the space W, ().

Proof. Firstly, we show that W, is closed with respect to w*-convergence. Suppose
(un o)) € W,y (05 --., ay) € L' and

(42) U, =g, a,—a in Lz, i=1,..,N.
This implies that there exists a constant K > 0 such that
(43) (2 az,,i)"W“l <K.

From Theorem 5 we conclude that there exists a subsequence {u, } converging to
u € L,(Q) in the L,-norm. Considerating (42) we obtain «, = u (see our agreement).
Let us denote by B, the trace of (u,, a,). With respect to Theorem 2 we have
|Ball .0 < cK and hence there exists a subsequence {,} such that B, — fe
€ L,(09).

By limiting process in Green’s theorem for (u,,, o, B,) We obtain Green’s
theorem for (u, ;, B) on account of (42). Thus (u, a;, f) € M'(Q) = W,(£2). Banach’s
theorem ([4], section V. 4.) implies that W, (&) is closed in the w*-topology. The
ball in the space [L,(2)]¥*! is compact in the w*-topology ([4], addition to V.) and
this implies the compactness of the ballin W,(2). The assertions on the space W,!({2)
are obtained by Theorem 2.

In the space W, (£2) the theorem on the equivalence of the norms is valid.

Theorem 7. Suppose (u, «;, B) € W, (). Then the function
N
(49 [ 26 B)lit = [Blisiems + Il
is an equivalent norm in the space W,'({2). |

25



Proof. Inequality |(u, a;)|w,: < c|(4, @;)|w,: follows from Theorem 2. On the
contrary, let us suppose that the inequality

' (O TS

is not valid. The there exist functions (u,, a,;, B,) € W, such that

(45) |(4ns @no Ba)|wr =1, n=1,2,...,

(46) [t 2 Be)lirs = 0, 7> 0.

If we choose a suitable subsequence with regard to Theorems 5 and 6, we can suppose
“7) . (Ups i Bo) = (u, i, B) in W,

(48) u,—>u in L,.

From (45) and (46) we conclude that [lu,|., — 1 and hence, with respect to (48), we
obtain |ju|,, = 1. Theorem 2 and (47) imply B, — B in L,(02). From (46) and (47)
we have ‘

loe]lz, < lim o, o =0, [B]r. o0 < lim [B,]r.om = 0.

Thus we have
(49) lulle, =1, ¢,=00n &, i=1,..,N, B=0on 0Q.

There exists a function y € Cg'(Ey) satisfying [, uy dx =+ 0. Easily we find a function
¢ € C*(Ey) such that ¢,, = y. From Green’s theorem we conclude

J'ulpdx=J‘u¢,ldx=J. ¢vldﬂ—j¢da,=0
Q- Q \> 0 2

and hence we obtain a contradiction.

6. The sides and the inner traces of functions from W,

Theorem 8. Suppose (u, «;, f) € W, (). Let us set
(50) a=oa; 0n 02, a;=00nQ, & =oa;,— o] on Q.
Then (u, &), (0, ;) € W,'(Q). |

Proof. Let us suppose f = 0 and let us denote

(51) ‘ u(x) = J.nK"(x -y u(y)dy, xeQ.
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On the ground of Green’s theorem we obtain

(52) l oy o= I KHx — y)dafy), xe@, i=1,...N.
Q
Let us consider ¢ € C(Q), extending it continuously on Ey. Denote
(53) Yulx) = | K'"(x — y)dy, xedQ,
J Q2
(54) oi(x) = | K*(x = y) o(y)dy, xeEy,
v
(55) @(x) = | K'Mx—y)o(y)dy, xeEy.
JEN :

Evidently @, —» ¢ in C(Q). From the fact that the domain Q belongs to the class C"

we obtain (see Remark below)

(56) Yp— % in C(09).

By the same method as in the proof of Lemma 1 (i) we obtain
(57) op > 39 in C(09Q).

Now we prove

(58) u, = (u, & + 3o;) in W)(Q).

Evidently u, — u in L,(). Making use of (52) and (57) we conclude

J.n(pu,,,‘ o = .’f o(x) K(x — y) dafy) dx =

xeN
yel?
P )

Jo
.~

= | }ody +j @ do; = J._‘P d(@; + 1o7),

J 0 Q2 Q2

because ¢, = @, on Q, and for small h there is

Lb(q’ — @) do;

Successively we obtain from (58)

(u, & + 4ai), (0,32), (0,0))eW,

< cfolca » o (S) = 0.

=| o¢pdy +J‘ @y doy; +I (@n — @p) do; -
] Sh
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and hence
(u, &) = (u, ) — (0, ) e W, .
In the case B + 0, (u, a;, f) € W) Theorem 3 implies that there exist measures

& € L,(f2) such that (u, &@, 0) € W,. At the same time & = o, in Q. From the facts
just proved we conclude (u, &) € W, , where &; = &, = a,in Q, & = 0 on 8Q.

-

Remark. We prove assertion (56). The normal v is uniformly continuous on 9Q.
Suppose x, € 0. We realise a linear orthogonal transformation of coordinate
variables such that x, will be mapped into point 0 and x5 = 0 will be tangent hyper-
plane with respect to 0Q at the point 0.

For |x| “small” 8Q will be described by xy = a(x’). The normal v can be expressed by

T a(x,))=< () —a, ) 1 )

(1 + |Va(x")|?)*/* T+ |Va(x")|?)"/? (1 + |Va(x")[?)"/?

On account of the uniform continuity of the normal v we conclude that for “small” |x|
even |Va(x')| is “small”. From

1
a(x") =J a, (1x') x; dt
0

we obtain —c|x’| < a(x’) < ¢|x’| where c is sufficiently “small”.

Definition 4. Suppose (u, ;, B) € W,'(&2). The measure «, € L,(0Q) satisfying

N N
(59) a0, =Y Vityon i j oda, =Y | ov,da;, @eC(0Q),
i=1 a0 i=1 Jan
is called the side of the function (u, «;, B) on 0Q.

The trace B° of the function (u, &;) € W, from Theorem 8 is called the inner trace
of the function (u, «;, B). It is evident that the measure B is uniquely determined by
the function u. '

If B = B° then a; = &@; must hold, i.e. a; = 0 on 6Q and hence a, = 0.

Theorem 9. Suppose (u, a;, B) € W, (2), let B° be the inner trace of (u, «;, f) and

&;, o; the measures from (50), i.e. (u, &, B°) € W,.
Then B = B° + a, and a; = v, on 0, i.e.

‘. (pdaz,=J- pv;da,, VoeC(0Q), i=1,..,N.
o 02 on

Proof. On account of Theorem 8, (0, a;) = (u, o;) — (u, &) belongs to the space W,
and hence the function (0, ;) possesses the trace § — B, i.e.

(60) anl’vs d(g — p°) = Ln(p da,, ¢eC(0Q)
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holds with respect to (2). We substitute the function ¢ by ¢v, and then we add (60)
fori =1,..., N. Thus we obtain

i ovid(f — B°) = i ov;da; ie. B—p°=uq,.
i=1Ja0

i=1 Jan

J ov; da, =j o da; .
o o2

Theorem 10. The inner trace of a function from W;(Q) is absolutely continuous
with respect to the Lebesgue area measure dS on 09Q.

Formula (60) implies

Proof. According to the definition we can suppose
(u, 2, B°) €W, , ;=0 on 0Q, i=1,...,N.

Xy

—

Fig. 1

-

From the Section 2 on the decomposition of the unit it is evident that it is sufficient
to prove the theorem in the case when Q has the shape as suggested in the figure.

L=02nK, S,={(x,xy)e®; a(x') — h < xy < a(x')}.

Let ¢ > 0 be an arbitrary number. We prove that there exists a & > 0 such that

J'qadﬂ

(61) 0eC(L), [ofewy 1, f iS55 <e.

suppe

Let h be a positive number such that

) I dfy] < 5.
Sh

There exists 6 > 0 such that

(63) McQ, |M|<5b=I |u|dx < he.
M

Suppose that ¢ satisfied assumptions from (61). We extend ¢ on  so that ¢ € C'({2),
@ =0o0n Q — S, |¢,,] < ¢/h on S, and ¢(x’, xy) = 0 if ¢(x’, a(x’)) = 0. Let us
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denote
M = {(x', xy); (x', a(x')) esupp ¢, 0 < xy < a(x')} .

Then |M| < 6b and with respect to ay = 0 on Lwe obtain

J¢v~dﬁ=ju¢xwdx +J-godaN.
L Q Q

Due to (62) and (63) the following estimate holds:

J(vadﬂ gfj |u|dx+j dloay] S ce.
L h M Sh

Since vy = ¢ > 0 on L(see (9)),

J.rpdﬂ‘ s 1
L VN

holds. Thus (61) is proved.

Let M < Lbe a Borel set with [, dS = 0. There exists an open in Lset G o M,
G < Lsuch that [; dS < 6. Then we obtain with respect to (61)

[Lomapsce
L

wwﬁw@=m{

deﬂl ; 9 C(L), |@llcay < 1, supp o = (—?} 3.
L ,

7. Restrictions and extensions of functions from W,
\

Suppose Q' = Q is a domain of the class C* with & < Q and (u, a;, f) € W, ().
The restriction of this function may be defined in many ways. It depends on the part
of the side on 02 which we add to-the restricted function.

Let us denote

(64) u = um, N a; = %ijq -

Theorem 11. Under the above assumptions, the function (u', «}) from (64) belongs

to the space W, (&) and its trace B’ € L,(0Q') is absolutely continuous with respect
to the measure dS on 0Q'.

Proof. With regard to Theorem 8 we can suppose «; = 0 on 022 and hence f =
= %€ L,(0R) is the trace of (u, ;). From Theorem 4 we conclude that there exist
u, € W (Q) such that u, — (u, @) in W, (2), [u,]|w.1c0) £ || (4, ¢)|w,1@) Let us
denote " =Q— &, v’ = u|Q", «] = o, in Q" and o] = 0 on IQ". {u,g-}o, is
a bounded séquence and there exists its subsequence such that u, o — (i, &) in
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W, (2"). Evidently & = u in Q"and &, = «,inside of Q”. Due to Theorem 8 (u”, o}) €
€ W)(?"). Let v} be the i-th component of the exterior normal to €. The function
(u”, af) possesses the trace f° on dQ. Let us denote its trace on dQ' by f'. p' is at the
same time inner trace of (u”, «;) and hence B’ € L,(0R") according to Theorem 10.
Now we prove that (v', }, f') € W, (2).

Green’s theorem holds for (u, «;) and (u”, &) with a function ¢ € C'(Q):

J. ov; dp° =J‘ ugp,, dx +.[ ¢ do;,
o0 2 2

J. ov; dp° —J- ov; dp’ =J' up,, dx +J. o da; .
o ) Q" Q"

Subtracting these formulas we obtain Green’s theorem for the function (u', g, B).
By the same method we can prove (ujq-, 2;5-) € W, (") and at the same time the
trace of this function is the inner trace of the function (', «}) € W, (Q2').

If two functions from W,,1 possess the same trace on the common boundary, then
it is possible to join them together. Suppose Q* > @ is a domain of the class C!,
Q =0% - Q.

Theorem 12. Let (u, o, B) € W, (Q), (v, a}) € W, (?') and suppose that (u', «})
possesses the trace B* on 0Q* and B on 0Q, i.e. the same trace as (u, a;, f) on Q.
Let us set

(65) u*=uon Q, u*=u on Q,
of =a;0on Q, of =a;+a on 0Q, of =a;, on O* - Q.
Then (u*, af, B*) € W, (2*).

Proof. It suffices to consider Green’s theorem for-(u, «;) and for (u’, «). By
adding them we obtain Green’s theorem for the function (u*, o).

8. Regularizations of functions from W,

In order that the mollified functions u, of u satisfy u, x u, we must take into
account the side of the function (u, a;). We proceed in the following way:

First we extend (u, oc,) on a larger domain, so that the side of the extended function
on 0Q is twice the side of (u, «;). Then we mollify the extended function. This method
we can use only for functions possessing the traces from L,(0€). A similar result is
obtained for the functions possessing the trace from L,(0®) by the diagonal method
and Lemma 1.

Theorem 13. Suppose (u, a;, f) € W,,’(Q) and let B be absolutely continuous with
respect to the measure dS on 0Q. Suppose Q* > Q is a bounded domain of the
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class c'. Then there exists (u*, o}, B*) € W, ($2*) such that
(66) L u*=uonQ, of =o;0nQ, of =20 ondQ.

For small h > 0 let us set
(67) uy(x) =I K'"(x — y)u*(y)dy, xeQ.
n.

Then u,, € W, (Q) and

(68) up = (u, ;) in W(Q) o [unllw,rc = (4 )| worcd) -

Proof. Suppose a; are the measures defined by (50). With regard to Theorem 8,
(0, a}) € W, (£2) and the trace of this function is equal to the side of the function (u, «;),
ie. (0, o}, a,) € W, (%) on account of Theorem 9. From this fact it follows (u, a; + «;,
B + a,) = (u, @ B) + (0, «, a,) € W,'(2). B being absolutely continuous implies
that o, = B — B° is absolutely continuous (see Theorem 10), i.e. § + a, is absolutely
continuous. With respect to [3] there exists u’ € W, (Q* — @) with the trace f + «,
on 92 (see our agreement). Now, we join together the function v’ € W!(2* — ) and
the function (u, «; + aj, B + ,) € W, (Q) and thus, by means of Theorem 12, we
define the function (u*, a}) € W, (2*). The first part of the theorem is proved. Evident-
ly u, - u in L,(Q). Suppose ¢ € C(2*). Let us denote

S, = {xeQ; dist(x, 0Q) < h}, Sy = {xeQ* — Q; dist(x, Q) < h}.

For y € Q* we set

oy) = LK*(x —Yo(x)dx, @y = J'

K"(x — y) ¢(x) dx .
Qe
With regard to (57) ¢, — 3¢ holds in C(0%). Easily we find that @, —» ¢ in C(8),

¢, = @,on Q — S, and

(69) Uy (%) = I K'x — y)daj(y), xeQ.
0
Then
J‘ Uy, dx = .[ K*x — y) o(x) dx dof(y) =
a >0
yen*
~
- j +H +ﬂ -
*e0 260 xe0
yeQ2 yedn2 yeSp*
=1 & dat'*‘j (o4 — @) doy; +J 2%““:"‘[ oy daj .
Ja ' o0 She
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For h - 0, [, @, dx; = [q ¢ d; holds
J‘ ((l’h - G_D-h) da;
Sh*

Wlth respeCt to (57), Ian 2(0,. ddi b d J‘an Q dai’

J’ P d“?
Sh*

This implies u), — (4, o;) in W, (2) and thus

< 2¢fean j d(z) ~ 0.

Sh

< [oleq j dlo| 0.

Sh*

||(“’ “i)“ W@ = }.i’% ““h” Wil(a)

Now we prove the converse inequality. [, |u,| dx — [, |u| dx holds on account of
the convergence u, — u in L,(Q). From (69) we deduce

Llth dx < HK"(x — y) dlaX(y)| dx =

xe2

ye*
=H +H+H <
xeN xeN2 xef2
yeQ2 yed yeSp*
< I de;| + J-J.2K"(x — y)dxdo] (y) + j dlaf] .
“ xeN st
yed2

The third right-hand side term converges to zero for h — 0. From (56) we conclude
faK*x — y)dx —» % uniformly for y€dQ and thus the second term converges
to [on dlay|.

Theorem 14. Suppose (u, «;, B) € W,'(Q). Then there exists a sequence u, € Wi(R)
such that

u, = (u, ) in Wul (@) and " “n“Wﬁ(Q) =* "(“r “i)" W) -
Proof. As in (50) we set
af=a; on 0Q, aj=0 on Q, &G=o;—a on .

Then (u, &, °), (0, &}, «,) € W, (£2) where B° is the inner trace of the function (u, a;)
and a, is its side.
Similarly as in Lemma 1 we set

uy(x) = J‘mR"(x - y)da(y), xe 69..
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Making use of Lemma 1 we obtain

.o in L0Q),  |u|rem — o]0 -

From Theorem 9 we conclude «; = v, on Q. Let us define «;; € L,(22) by

(70) J‘ o doy, =f ovu,dS, ¢eC(@Q); a;=0 in Q.
on o9

We find easily that (0, &, u;) € W, (&) and

(71) (0, 0,) = (0,) in W, (D).
We prove that
(72) 10, @), > (0, @) w,.s -
[ atobd = { -l a5 5 [[ o R = 5) ) ) e5te)
on on
=

< f (e () dles] () = j v dle] = Jo] com -
on on

We used
(73) [Va| = [¥|.|o|, ¥eC(0Q), xeL,(02)

in our reasoning.
The converse inequality can be obtained from (71). Let us set

(74) (5 o By) = (u, @; + atpy, B° + up) € W, (D)

(see our agreement), where B, is absolutely continuous with respect to dS. Theorem 13
implies the existence of uy, € W;'(2), k > 0 such that

(75) Upy — (u, am) in W,,l 3 "uhk";yll - ”(u, a'”)”wul .
=0 =0
From (71), (72) and (74) we conclude

(76) (o) = (w0) in We, [ ) = (s @) -
Suppose {¢’}j%, is a dense subset in the space [C(2)]"*!. For ¢ = (¢o, ..., @y) €
€ C"*1, (u, a)) € W, (£2) we define
N
(77) (4, o), @) = J’ “u@o dx +iZl _@ida;.
n =1Ja
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For each positive integer n, there exists h, > 0 such that

I((us ah,.i), ‘P'I> - <(u’ al)’ (pj> I < % for .’ = 1’ ey B

1

”l(“’ ab.l)"W,.‘ = H(u, al)"’,.ll < ; .

To this h,, there exists according to (75) such k, = 0 that

. 1 .
I(uh,.km (pj) - <(u9 ah,.i): ¢l>| < ;" fOl' J = lv ey B

1
e = 1 2l < 2

Hence we deduce [uy, s [lw,» = (4, ) w .

<uh,.k,.’ (PJ> = <(u’ ai); (P}> fOl' .’ = 19 2, LR

n— o

Thus, we obtain u,,, — (u, a;) in W, (). The theorem is proved.
R ©

§. 2. SPACE Wk
9. Definition and fundamental properties of W,

Let us denote e,, = (0, ...0,1,0,..., 0) the N-dimensional vector with the unit in
the m-th place. Let x be the number of multiindices i with |i| = k.

Definition 5. W,;(£2) is the space of all (x + 1)-tuples (u, «;),;=x such that ue
e Wi (), ¢;e L (@) and
(78) (D't typgys - vos Aysey) € Wo(2) forall |i| =k —1.

The norm is defined by

“(“’ “:)uv..*(ﬁ) = IIuIIW,k-.(,,, +|'_lz=k||°‘t"1-.(n)°

The w*-convergence in the space W is defined as the w*-convergence in the space
W4™! for the first component and as the w*-convergence in L ({2) for the other com-
ponents. The space W{{(Q) can be canonically imbedded into the space W,(2) by the
rule (in the sense of our agreement)

ue W (ﬂ) (u, D‘u)m_.,, € Wk(a)

The space W () is defined in the following way: (u, a;) € W*(Q) iffue W4 (Q)and
for all |i| = k — 1 the function from (78) belongs to the space W, ({2).
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Suppose (u, a;) € W(Q). The same decomposition as in Theorem 8 can be realized.
For [i| = k let us set

-

(79) o =oa;0on 02, o;=0o0nQ, &=0o —a on Q.

Regarding Theorem 8 we find that (u, &@,), (0, «;) € Wyi(Q).
Definition 6. The measure o, € L,(02) defined by
N
(80) o, = Z Vi oo v(kaeh +ote, on 0Q )

is called the side of the function (u, ;) € W($).
The formula for «, corresponds to the formula for the k-th derivative with respect

to the normal v for the functions from Wf. An analogical theorem to Theorem 9 is
valid.

Theorem 15. If (u, ) € Wi(Q), then

a = v ..ovira,, i=(iy..0iy) on 0Q
for all |x| = k.

Proof. Let us rewrite the assertion of the theorem into a more suitable form
at‘,l+._'+¢ik = v‘l “ee vikav ’ il’ veey ik =‘1, ooy N .

For k = 1, the assertion is proved in Theorem 9. With respect to the Definition 5 we
have

+‘..+¢,-k

(D"'z u, a,,.l+...+.,-,)'svl=1 eWi(Q).

N
The side of this function is equal to ) Viee, +..bey,®
1

=

From Theorem 9 we obtain

N
(81) Qe+t = Vi, Z v!xaeil+e,-2+...+e,-k » h=1.,N.

1=

The same assertion is valid for the index i,

N

(82) Qe +.tey, = vlzjzlvh a¢“+ch+t;3+...+e'-k » b=1..,N.
2=
If we substitute (82) into (81), then

N

a"|+"'+“k = vhvizj Z lvhvhaejx+'jz+‘i;+'"+¢l'k >
g 1,J2=



After k steps we obtain
N

Oe; +otes, = Vig oo Vi Z IVj, v Ve +ote; = Vigeo- Viy
J1seensdk=

Analogous theorems on imbedding are valid for W,(&2) as in the case of W,.

The imbedding Wi(2) - W;~'(Q), 1/]g = 1 — 1/N is continuous and the imbed-
ding W,(Q) > Wk (@), g* < g is compact. This imbeddings are defined by the rule
(u, o) = u.

Proof. The morms | D'u ., |i| = k — 1 can be estimated from Theorem 5 and the
norms ||D |, |i| £ k — 2 can be estimated by means of the imbedding W}™* —
- W -

Compactness can be proved similarly.

Theorems on imbedding of Wi() into Wg(), C**(£), e < k — 2, are valid in the
same form as for the space Wj (Q) This is a consequence of the transitivity of imbed-
dings, which makes it possible to obtain them from the imbedding Wy — W:™'.
Z " % 1@ is an equivalent norm in the space WHD).

Proof. Using Theorem 7 we can estimate the norms | Dju]] Ly |i| = k — 1 and then
we apply the theorem on equivalent norms in the space Wi~

If (u, a;) € Wy(8), then (u)q,, %;y,) € Wi(2'), where @ < Q. This assertion follows
immediately from Theorem 11 and from the definition of the space W;.

Let us denote [L(2)]* = {{a;}; |i| < k, «;€ L,(Q)}. The space Wi(Q2) can be
canonically imbedded into [L,(2)]* by: the rule (u, o;) = {2} <1 Where a; are the
same for |i| = k and a; = D’u (in sense of our agreement) for [i| < k — 1. The next
theorem is valuable in applications.

Theorem 16. The space W:(Q) is closed with respect to the w*-topology as a sub-
space of [L(2)]"".

The ball in the space W,(£2) is compact with respect to the w*-topolog y.

The same assertion is true for WX(Q).

Proof. Let (u,, a,) — {2;}}5<x (w*-convergence) in [L,(%2)]*'. By the same method
as in the proof of Theorem 6 we find from the theorems on imbedding that u =
= g€ W5™!(Q) and that «;€ L,(R), |i| < k — 1 (in the sense of our agreement).
Analogously as in the proof of Theorem 1 we can prove that a; = D'u, |1| k-1
in the sense of distributions. It remains to prove that (D'u, ;4. Jn=1 € W, for |i| =
= k — 1. However, this is a consequence of the Theorem 6 and of the fact that

(D Uy, an,i+e m 1 (Du,ai+¢m: 1 ln Wl(ﬁ)

The rest of the proof is the same as that of Theorem 6.
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Now we prove that W,'f is closed in [L,,(Q)]"' with respect to the w*-convergence.
Suppose (u,, a,;) = {&;};<x and (u,, a,;) € Wk. The first part of the proof implies
{@:} 1y sk = (w,’¢;) € Wy in the sense of canonical imbedding. Owing to the theorem
on imbedding, there exists a subsequence {u, } converging to u in the norm of the
space W4~ and hence u € W™*. For |i| = k — 1 we have

(D‘“n, a,,".f.,m) = (D‘u, a‘+¢m) in ”’“‘ .
From the fact (D'u,, o, ;+.,) € W, and from Theorem 2 we conclude (D'u, a;+,,) €
ew,.

The rest of the proof is the same as that of Theorem 6.

10. Regularisation of functions from W

We use the same method as that in Section 8. In order to prove the existence of the
extension similar to the extension (u", a,‘) from Theorem 13, we prove first of all
two lemmas. We shall assume that the boundary dQ is sufficiently smooth, so that
we were able to transform suitably pieces of the boundary in the proofs of lemmas 3
and 4. It suffices to assume that 39 is of the class C**!.

Lemma 3. Suppose (u, o)) € Wa(£). If a5 = 0, |i| = k then there exists a domain
Q* > 0 and a function (u*, o) € Wy(2*) such that

u*=uonQ, o =a,0nQ.

Proof. First we prove the assertion in the case of the cube. Let us denote
K ={x;0<x;,<b,i=1..,N—1, —=b<xy <0},
Ki={x;0<x;<b,i=1..,N—1, 0<uxy<b},

L ={x;0<x;<b,i=1..,N—1, xy=0}.

Let us assume that the support of (u, a;) € Wi(&2) is a subset of K U L. We extend the
function (u, ;) by zero on {x; xy < 0}. We use the method of Nikolsky — see [2].
Let A; ... 4 be real numbers such that

(83) ia,,,(-m)f=1 for j=0,..,N—1.
i m=1

Let us define the function # € W}~ '(K,) by the rule
k

(84) a(x', xy) = Zl).,,u(x', —mxy) .
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Then fori = (i, ... iy) |i| £ k — 1 we obtain
K
Dia(x’, xy) = Y. An(—m)™ D'u(x’, —mxy) .
m=1

(85)
Let us define the measures &, € L,(K,) [i| = k by formula

o, xy) A5, ) = 5 h( =) L j 0 ( - —";) dafx', xy)

(86)

-
SN,

X7

K| Fig.2

If |i| = k — 1 then there exists u, € W, (K) such that
u, = (D'u a;.. )=y in W,(K).

Now, let us define i1, € W, (K,) by formula
k
iy (x', xy) = 3 Au(—m)™ u(x', —mxy), (x', xy) €K, .
m=1

#7)

By direct computation we find that
ﬁ" = (Diﬁ, &‘4.,/)?':1 in W;(K]) .

From (84) we deduce that & € W™ !(K,) and hence (i, &) € WX(K,). According to

(83) #,(x’, 0) = u,(x’, 0) is valid on Lin the sense of traces. Owing to Theorem 2 the

functions (D'u, a;,.,) and (D'@, &, ,.,) possess the same trace on L. Thus Theorem 12

enables us to fasten these functions together. Let us set u* = uon K, u* = 1 on K,
| =K. )

39

of =a,onkK,of =donkK,,af =a,+donL|i|=K
We obtain u*e Wi /(K u LUK,) from (83). Thus we conclude (u* af)e
€ Wi(K U K,). From formula (86) it can be seen easily that @& = 0 on L and hence



af = O0on L, |i| = K. The support of the function (u*, a}) is in K U LU K, and thus
(u*, «f) can be extended by zero on any larger domain. It can be seen from the proof
that the following estimate is true:

”(u*’ ar)”W,."(KU_KI) —S- c”(u, al')”W#"(i) .

Now, let us assume (u, @;) € Wi(&2) with o; = 0 on 89, |i| = k. Let the cubes K,
cover 9Q similarly as in Section 2 and let y,e C**!(Q), r = 0, ..., R be the cor-
responding decomposition of the unit. We extend smoothly each function y,, r =
=1,...,R on Ey so that its support is in K, and y, = Cy"'(Ey). Let us denote
u,=u.y onQ a,; = Dy, in Q, |1| = k in the sense of distributions and a,; = 0
on 9Q. Owing to Theorem 3 and 8 we find easily that (u,, o,;) € Wi(£2). Then we carry
out a .corresponding linear orthogonal transformation of coordinates, after which
there will be K, = {x;0 < x; < b} and 92 n K, will be described by formula
xy = a(x’) where a possesses the corresponding smoothness. At last we use the
transformation of coordinates

Az, ) (x’, ;T’)’C_) xN)

A transforms the domain Q N K, onto K,. We extend the function (u,, ,;) on (), o)
as at the beginning of the proof, then we pass to the original coordinates and finally
we put together the functions (u], o).

Xy
b K
R %
G,
Fig. 3
Q.

Lemma 4. If u’ € L,(0Q), then there exists a function u € W{(Q) satisfying

lullwiay < e’ Lion
and ,
ou * u &,

Uy=—=...=——=0, =4 on 02,
ov vk ovF1

where 6/8v is the derivative with respect to the exterior normal on 0Q.

Proof. The proof is completely analogous to that of Theorem in [3]. First we
prove the theorem in the case of the cube.
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For 0 < t < b let us denote
0, ={x10:0<x;<b,i=1..,N-1}.
There exist functions u, € C3(Q,) satisfying
() 3l Y A P Y Y B
n=1J0o
Suppose that t,, t,, ... is a decreasing sequence of positive numbers, t, — 0. Let us
denote

Po={(x,xy); 0<x;<b, i=1,..,N =1, t,,; <xy<t,}.

Let us define the function @ in the following way:

’

i=ulon Q,., Le #lx,t)=1ulx),

(89) u(x', xy) = So = Xn u(x’, 1,) + v = It iu(x’, t,y,) for (x', xy) € P,

n n+1 n n+1

and @(x’, xy) = 0 for xy = 1.
Let us estimate dii/dxy in Ly(K). For (x’, xy) € P, we obtain

Dy — Beal¥) = i)

Oxy In = thiq
o

in
I dx’ dxy =J dx'J
Py 0 Qo thsy

With respect to (88) we obtain the estimate

and hence

o dxy = | |upss(x) — up(x)] dx" .
0xy 2

XN

oii
(90) f —| dxy < ¢f|t’|Lion -
x 10xy
This estimate is independent of the sequence t,, t,,.... Now, let -us estimate

Ix | D' dx, |i| £ k, where D' is the tangent derivative (i.e. iy = 0). Owing to (89)
we obtain :

|Di(x', xy)| dx < |Diuy(x")| + |D'upss(x7)]
for (x’, xy) € P,. Let us denote
a, = | D'uy||Lio0r + | D'ttns1]lLsconr -
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Then
J. {D'a|dx S Y (ty — tas1) O S ). tar1(an + G44y) + 119, .
K n=1 n=1
The sequence {t,} can be chosen so that the following inequality be valid
(o1 [[ 108105 = ol or 1560 0.
K

Let us set

Uy = U,

uk—Z(x” xN) = I Nulz—l(x,’ E) dé ’
0

uy_3(x', Xy) = J‘ N"k—' J(x', &) d¢,
)

..............................

u(x’, xy) = uo(x’, xy) =I

0

X

Nu (x', &) d¢.

We shall estimate [ |D'u|dx for |i| < k. If i = (0, ..., 0, k), then D'u = dii[oxy
and thus (90) implies the required estimate. If i = (i, ..., iy), iy < k — 1 then
D'u = pU-in=1.0 _ Thus, it suffices to estimate the tangent derivative for the
functions uy, ..., y_, in L,(K). Let D' denote the tangent derivative. Then, with
respect to (91), we obtain

b XN
J [Diuy— 5| dx < J deJ' dx’f [Dia(x', )| d¢ <
K Qo o

0
b
< J deI |Dia(x’, &)| d& dx’ < blu’| Lo -
(1] K

Similar estimates for the functions u,, ..., 4,_; can be deduced recurrently. Altogether
we obtain the estimate

lullwreer < e]w’]lzieo -
We find easily that
e &*tu

Uy=—-=...= =0, —~
Oxy axk™? oxy !

’

=yU=1u

in the sense of traces on Q.

The assertion follows in the usual way, by means of the decomposition of the unit
and by a transformation of the boundary.
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Lemma 5. Let (u, a;) € Wi(£2) be such a function that its side «, is absolutely
continuous with respect to the measure dS on 0Q. Then there exists a bounded
domain Q* > @ and a function (u*, «f) € WS(Q*) with compact support in Q*
which satisfies

u*=uonQ, o =a,0nQ, o =2 0ndQ.

Proof. Let us decompose the measure «; = & + «; as in (79). There exists a func-
tion u’' € L,(09), u’ = a, in the sense of the agreement. We choose such Q* that it con-
tains the cubes K, from the decompositions of the unit used in the proofs of Lemmas 3
and 4. Owing to Theorem 15 it holds ajj, = Vit v (see the agreement), i =
= (iy, .-+ iy). According to Lemma 4, there exists a function uj e W{(Q* — Q)
satisfying

(92)
u; =Q‘-’l=_‘_=ak_2u; =0’ ak—lull

N avm—z awk-l

=(-1'4 on 0Q, v = —v

and moreover u; = 0 on the boundary 0Q*. Let us set
u, = uy on *—Q, u, =0 on @

@y, =D on @*—-2, «ay=a on 2, |i|=k.

We prove that (uy, ay;) € Wi(2*). It is easily to find that u, € Wi '(Q*). Let us
consider |i| = k — 1. We prove that the function (D'u;, &, ;4. )m=1 can be obtained
by the fastening together the functions (D'uj, D***"u}) € W,(2* — 2)and (0, a;.. )€
€ W, (f2). Hence it belongs to W, (2*). The function (0, ;.,,) possesses the trace
(Theorem 9) '

N N
Y Ve®iten = 2 VmVi' e VIV = Vi VR
m=1 m=1

We can see from (92) that for |i| = k — 1

Dhuy = vt Lovy (=) = v v,

holds on 922 in the sense of traces. From Theorem 12 we conclude (D'uy, ay ;.. ) €
€ W, (3*) and (u,, ay;) € Wi(£2*). According to Lemma 3 there exists a function
(42, @z;) € W(82*) such that u, = u on , ay; = «; on &, |i| = k. It suffices to set
(“" al.) = 2(“1- “u) + (uz’ “24)-

Now it is possible to prove theorems analogous to Theorem 13 and 14.

Theorem 17. Let us consider a function (u, «,) € W,(Q) with the side a, absolutely
continuous with respect to dS on 0Q. Suppose that (u*, a}) € W,(£2*) is the function

43



from Lemma 5, i.e. u* = u on Q, af = a; on Q, af = 2a; on 6Q. For small h > 0
let us set

(93) uy(x) = J. K*x — y)u*(y)dy, xeQ.
o
Then there holds o \
= () in Wi(Q),  |ulwra ~ [ “i)||w,.:*<n)-
Proof. For small h > 0 and |i| = k — 1 we obtain
D'uy(¥) = J‘ K'x — y) D'u*(y)dy, xeQ.
o

Since (D'u*, af.,) € W, (2*) we deduce

D***mu,(x) =J' K(x — y)dafy., (), xeQ, m=1,..,N,
n*

s

where |i| = k — 1.

Thus we obtain
(94) Dlu(x) = f KHx — y)da¥(y), xe@,
a*
for |i| = k. Evidently

wou in W), uwr-ra > [ulwa-ia -

Following step by step the proof of Theorem 13 we prove D'u;, — a, in L (&), |z| =k
and

1D"usl| s = Nl > 1i] = k-
Theorem 18. For each function (u, a;) € Wy(£) there exists u, € W{(Q) such that

u, = (u,a) in W:(Q) ’ "“»"W.*(m =» "(“’ “t)"vv,.*(?zr

Proof. Let us decompose the function (u, &;) = (u, &) + (0, «}) as in formula
(79). As a consequence of Theorem 15 it is ;oo = v'a,, Where a, is the side ‘of the
function (u, a;) as well as the side of the function (0, a}), v' = vi' ... v}. Similarly
as in Lemma 1 let us set

u(x) = J‘ RYx — y)da(y).
on
Let us define the measures oy; € L,($2) by the rule a;; = vu; on 6@, oz, = 0 on Q.
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It is easy to see that (0, a;;) € W,¥(€2) and the function (0, a;) possesses the side u,.
Because of Lemma 1 and Theorem 15 we obtain

I o day; =J. oviu, dS —+J~ v da, =J- o da;
2 o0 9 7]

for all ¢ € C(Q) and hence (0, a;;) — (0, «;) in W, (). By the same argument as in the
proof of Theorem 14 we deduce

"“"vilan"Luwm - ||°‘§|an|,Lu(an>

and hence [oz]| @) — [|oi]c.@- Let us set (u, ay) = (u, & + o5;) € Wi(Q). It can
be seen easily that

16 )l = 1 @) + 0 @) e =
o s @)+ 10 ) = 5 @

At the same time the side of the function (u, o) is absolutely continuous.

The rest of the proof is the same as that of Theorem 14. The duality is defined for
¢ = {0}y 20 @i € C(Q) and for (u, ;) € W)(Q) by the formula

() 9> =% j Diupydx + 3 [ oyda.

[i|5k—1 =k Ja

The same theorem on equivalent norms is valid in the space W,(&) as in the space
WHR).

Theorem 19. The formula |u[| ., + Y. || cuq) is an equivalent norm in the
1=k
space W)(2).

Proof. Let us suppose that the functions u, € WY are those from Theorem 18.
u, = (u, a;) in W} implies

[Du|., <lim |Du,|., for |ij <k -1 and
lle, < lim |Diu,|y, for [i| = k.
The convergence ||u,]wx = [[(4, #;)|w,» implies
(95) [P, > | D'ulle, > [i] < k-1
IDwale, = Jolle. s il = K-

However the expression [u|,, + Y. | D'u|., is an equivalent norm in the space Wy.
|iT=k
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