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ON SOME NEW PROPERTIES OF THE CANTOR SET

Sr1 SAcHI BHUSAN SEN GUPTA, Kalyani

(Received September 16, 1969)

Introduction and notations. Suppose that the real number x is expressed in the
Scale g (g is a positive integer > 1)

(1) x=c—‘£x—)+9—(;2+...+i?+...

) g g
0=<cfx)<g,i=12,...and that the digit b, 0 < b < g — 1 occurs n, times in
the first n places of the expression (1) for x.

If lim ny/n exists and equal to § then we say that the digit b has frequency .

n—w

[See HArRDY and WriGHT [9]].

We say that x is simply normal in the scale g if lim n,/n = 1/g, for each of the
(9 — 1) possible values of b [See [9]]. e
Let : &

(2) Yd,=d;y+d, +ds + ... +d, + ..
n=1

_be an infinite series and let {k,} be an ascending sequence of positive integers; then
the series

(3) denzdk|+dkz+"'+dk,.+"‘
n=1

is called a subseries of the series (2).

Let each number of the interval (0, 1] be expressed in the scale 2 with infinitely
many digits equal to 1.

Hence, if x € (0, 1], then

“ PR T S

AP

where g,(x) = 0 or 1, and ¢(x) = 1, for infinitely many k.
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We have correspondingly an infinite series

o0

(5) (*) =k2=:le,‘(X) d

which is a subseries of (2).

Also every subseries (3) of the series (2) can be obtained from (5), [by putting
g(x) =1,n=1,2,...and g(x) = Owhen k £ k,,n =1,2,...].

Hence all subseries of (2) can be mapped onto (0, 1]. We say that certain property P
is valid for almost all subseries of (2), if the corresponding set {x}, x € (0, 1], has the
Lebesgue measure 1. For instance, we know that almost all subseries of a divergent
series are divergent. [See [8]].

Let (5) be a subseries of the series (2), and let p(n, x) = Y &(x). Then the numbers
k=1

(n, x) p(n, x)

pi(x) = lim inf 22X | p (x) = lim sup 22/
n

n— o n—ow n
are called lower and upper asymptotic density respectively of the subseries (5) in the
series (2).
If the limit p(x) = lim (p(n, x)/n) (= lim (p(n, x)/n) = Iim (p(n, x)/n)) exists, then
we call this number asymptotic density of (5) in (2). Obviously p,(x), py(x), p(x) €

€[0, 1] [See [12]].

Theorem 1. For almost all points (x) = Y, (2g(x)[3*) = 3. (ci(x)/3*) of the Cantor
k=1 k=1

set C, each of the digits 0, 2 has the frequency }.

[That is almost all points of C have nearly equal number of twos and zeros in the
first n digits, where n is sufficiently large and each point is expressed in the ternary
scale.]

Proof. We know the Theorem that almost all numbers are simply normal in any
given scale g [See [9]].

It follows that almost all numbers of (0, 1] are simply normal in the scale 2 (i.e.
g =2).
That is, if x = (e(x)/2) € (0, 1], &(x) = 0 or 1 and g(x) = 1, for infinitely
k=1

many k and if the digit 1 (or 0), (i.e. b = 1 or 0), occurs n, times among the first n
numbers &,(x), &;(x), ..., &,(x), then

(6) lim ”

b
n-o N

, for almost all xe(0,1].

N |-
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Now consider the Cantor series 2/3 + 2/3% + ... + 2[3" + ... we form the Cantor
point

(x) Z 28}(( ), corresponding to  x =Y B—kz(Tx) .

k=1

It follows from (6) that the digit 2 (and also 0) has the frequency 4 in the expression
for (x), for almost all (x) € C.

Hence the theorem.

Note 1. For any Cantor point x = -§1 = +§022... (Scale 3), (which is the left
hand end point of an interval complementary to the Cantor set C, and é is a finite
complex of 0’s and 2’s), we have

lim 22 =1, lim™ =0

n—o N n—o N

(n, is the number of b’s in the first n digits of -51, b = 2, 0). For the Cantor point
x = -8, which is the right hand end point of a contiguous interval, lim (n,/n) = 0
and lim (no/n) = 1. B

n— oo

Note 2. If we represent the numbers in (0, 1] in the ternary scale as

—ci(i)+%(zx—)+...+ikx)+..., where c¢(x) =0,1,2

and N,(r, x) as the number of ¢,(x) in the first n terms, each having the integral value
r (=0, 1, 2), then we know that lim (N,(r, x)/n) = 4, for almost all x in (0, 1], [9].

n— oo
If we denote this set of simply normal numbers (of measure 1) by N, then we know
that the set N is of First Category [See [13]].

Also, if we denote the derived set of the sequence

Mles) Be), | Nl ()

1 2 n n
by {N,(r, x)[n},, it has been shown by TiBor SALAT [13] that, for all x €(0, 1],
except for a set of the first Category (F.C.), [including N, ]

{N o7 x)} [0,1], for eac‘h r(=0,1,2).

If we now consider the perfect set C (the Cantor set) instead of the whole interval
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[0, 1], where each point (in the scale 3) x is given as x = ). (26(x)/3"), &(x) =0, 1,
we have seen above in Theorem 1 that L=

i )1
n—o n 2
for each r (=0 or 2) for almost all x e C.

We can, therefore, say that ‘Almost all numbers belonging to Cantor set C are
simply normal’ (with respect to C). We denote the set of such numbers by N ,. (It
should be noticed that none of Cantor points can be simply normal with reference to
the whole interval [0, 1] and the scale 3, as none of the Cantor points contain the
digit 1, as x = 1/3 = 0/3 + 2/3% + 2/3® + ..., and so on.)

The question now arises, whether the other two properties mentioned above hold
good for the Cantor set as well: That is

(i) Is the set N5 , (= the set of simply normal numbers of Cantor set C, as defined
above) of first category with respect to C?

(ii) Ts it true that except for a set of first category (with respect to é‘) including N ,,
for other points x € C, which form a residual set (with respect to C),

{M}'=[o, ] for r=0,27

noJ,

Since C is mapped onto [0, 1], that the answers to both the above questions are
in the affirmative may be conjectured from Tibor Salat’s Theorem [13]:

For all x € (0, 1],

[x=§f£9’%&%=mq{&%ﬁ%&=DAL

with the exception of a set of the first category, for each r (=0, 1).

We give below a formal theorem:

Theorem 2. For all x € C, with the exception of points of a set of the first category

in C
Pl —p, (=02

holds.

Proof. The proof of this theorem follows as a Corollary to the following theorem
of P. Kostyrko [10]:
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Let

a0 0
a,>0, A=Ya,< +0,a,>R, =Y a,,, (n=1,2,..)).
k=1

n=1
Let W denote the set of all numbers x of the form x = ) ¢,a,, where g, = 1 or — 1
n=1

(n =1,2,...). Let f(n, x) denote the number of k’s, k < n, for which ¢ = 1. Then
for all x e W with the exception of points of a set of the first category we have,

{i(”_"_)} ~[0,1].

n n

If we now put a, = 1/3" (n = 1, 2, ...), the conditions a, > 0, A = Y a, and a, >
> R, (=1/2.3") are all satisfied. In view of the fact that the Cantor set C is obtained
by a translation of W(C = W+ A = W + 1/2,since A = Y (1/3") = 1/2), the above
theorem follows from P. Kostyrko’s result [10].

Theorem 3. Almost all points of the Cantor set C have each an asymptotic density 3
in the Cantor series

2
T osn A = A s

+2 3k

wIiN
wWIN

Proof. Let x be a point of (0, 1] given by

5 alx)
A x = L
(4) kz-:l 2k
where g(x) = 0 or 1 and g(x) = 1, for infinitely many k’s.

We have correspondingly the Cantor point

(B) (x)=2—8‘—(x—)+ﬁx~)+...+2£—"(x—)

+ .o
3 32 3

which is a subseries of ) (2/3%).
k=1

Now, number of twos in the first n terms of (B) in the right hand side is the same as

n

kzlsk(x) =p(n,x)=n,, (b=1).
Hence
lim I—’(n———’i) = lim ﬁ.

n— o n n—wo N
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Since by Theorem 148 page 125 [9], lim (n,/n) = 4 (b = 1, 0), for almost all
x € (0, 1], it follows that lim (p(n, x)/n) = 4, for almost all (x) € C. Hence the theo-
rem. e

We know from Randolph’s Theorem [11] that every point € [0, 1] lies midway
between a pair of Cantor points. Bost MAJUMDER [ See [6]] gave an alternative proof
of this theorem. He further showed that almost all points of [0, 1] are each midway
between a continuum number of pairs of Cantor points [6].

We now prove the following

Theorem 4. Each point A of (0, 1) is the midpoint of a unique pair of Cantor
points if and only if A itself is a Cantor point.

Proof. It has already been seen [6] that, taking

w 0
0+ =a=32 5 lil it ae[-11],
i=13* 2
we get
d 2 v =1
_=A_— = —i.’ V'= 0
2 2 ;;13‘ 1

Generally this representation is unique. But if 4d (and hence A — 1) has more than
one such representation, then there are only two such representations and 4d (and
hence 1 — 1) is given by,

d _ {-vlv2 v Ve—q(—1) 111 L
2

ViVy o Vo1 (0) (= 1) (= 1) (=1) ...

or else by .
-1
d_ {.vlvz 1 (0) (D) () (1) . w10
2 Vivy e Vg (1) (= 1) (=1) (=1) ... 1
Now since
2 _Q2Bi—w) Q28 2y
d = —_— = = = —_— - _— - X,
';1 3 i:;l 3 .2'1 3 igl P =Y
where
yeC, xeC
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By choosing

=
|
p—
>
I
(=]
—
-
=
|
|
p—t

and either

—r—
= F
([Tl
—~
=8
I
-
s
I
(=]

Henced = Y (2v,/3')is uniquely representableasd = y — x, y € C, x € C, if and only
i=1

if no v, is a zero, i.e. if and only if no é;is an 1, that is if and only if (= (d + 1)/2)

is a Cantor point. And in this case y — x =dor y —x =21 —1or 2A =y +

+ (1 = x) or 24 = y + x’ where y € C, x’ € C (as the Cantor set C is symmetrical).
Hence the theorem.

Corollary. Each Cantor point is the arithmetic mean of a unique pair of Cantor
points.

We know that the set N; of simply normal numbers in [0, 1] in the scale 3 has the
measure 1 [9] and also the set T, of numbers d € [0, 1], each being the difference of
continuum number ¢ of pairs of elements of the Cantor set C has the measure 1 [See
Boas [1] and Bose MAJUMDER [5]].

Hence the set E = N3 n T, is also of measure 1 [See Bose MAJUMDER and Das
GupTA [7]]. We thus have the theorem:

Theorem 5. Excepting possibly for a set of measure zero, every point in [0, 1]
which is expressible as the difference of a pair of Cantor points in continuum
number of ways is necessarily a simply normal number in the scale 3 and vice
versa.

Note 1. That the two sets are not identical can be seen from the fact that there
exists d € [0, 1] which belongs to T, but does not belong to N,. For instance, let
d = -6 (scale 3), where 8 is a complex containing a finite number of zeros and twos
and thus ending with a 2. This represents the right hand end point of a contiguous
interval of the Cantor set C. As this representation of d does not contain any 1, it
follows that this can not be a simply normal number. But it is known that [See [2],
[3]] this d can be expressed as the difference of a pair of Cantor points in continuum
number of ways. Hence -6 € T, but -6 € N;.

Note 2. Though T, and N, are each of measure 1, it is interesting to note that T,
is a residual set [See [4]], but N3 is a set of the first category [See [13]].

In conclusion, I offer my sincere gratitude to Dr. N. C. Bose MAJUMDER of
Calcutta University for his kind help and guidance in the preparation of the paper.
I am also thankful to the Reviewer for his kind suggestions to improve this papet.
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