

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0096|log80

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

AN INEQUALITY FOR UNIVALENT FUNCTIONS DUE TO DVOŘÁK1)

MAXWELL O. READE, Ann Arbor and Toshio Umezawa, Urawa (Received May 21, 1969)

1. In a recent note Dvořák established the following result [1].

Theorem A. Let $f(z) = z + a_2 z^2 + ...$ be analytic and univalent in the unit disc D. Then f(z) satisfies the inequality

(1)
$$\operatorname{Re} \sqrt{(f(z)/z)} > \frac{1}{2}$$

for $|z| < r'_0$ where r'_0 is the smallest positive root of the equation

$$r\log\frac{1+r}{1-r}=2.$$

A computation shows

(2)
$$r_0' = 0.83355...$$

In this note we obtain the exact value of r'_0 .

Theorem B. Let $f(z) = z + a_2 z^2 + ...$ be analytic and univalent in the unit disc D. Then f(z) satisfies (1) for $|z| < r_0$ where r_0 is the smallest positive root of the equation

(3)
$$\left[S^{-1} \left(\frac{1}{2} \log \frac{1+r}{1-r} \right) \right]^2 + \left[E^{-1} \left(\frac{\sqrt{(1-r^2)}}{4} \log \frac{1+r}{1-r} \right) \right]^2 = \left[\frac{1}{2} \log \frac{1+r}{1-r} \right]^2,$$

where $S^{-1}(x)$ and $E^{-1}(x)$ are the inverse of $S(x) = [x/\sin x]$ and $E(x) = xe^{-x}$ respectively. This result is sharp. A computation shows

$$(4) r_0 = 0.83559 \dots$$

Proof. It is easy to see that the condition (1) is equivalent to the inequality

$$|\sqrt{(z/f(z))} - 1| < 1.$$

Now Grunsky has shown that for normalized univalent functions in the unit disc we must have the sharp inequality

(6)
$$\left|\log (f(z)/z) + \log (1 - |z|^2)\right| \le \log \frac{1 + |z|}{1 - |z|}$$

¹⁾ This research was supported in part by funds received under NSF-GP 8355.

for all z in D [3; p. 113]. From (6) we obtain

(7)
$$|\log \sqrt{(z/f(z))} - \frac{1}{2}\log(1-|z|^2)| \leq \frac{1}{2}\log\frac{1+|z|}{1-|z|}.$$

We now set $w = \log \sqrt{(z/f(z))}$, $A = \frac{1}{2} \log (1 - |z|^2)$, $B = \frac{1}{2} \log [(1 + |z|)/(1 - |z|)]$ in (5) and (7) to obtain

$$\left| e^{w} - 1 \right| < 1$$

and

$$|w - A| < B,$$

respectively.

We are now going to show how A and B must be related in order that the inequality (8) should hold subject to the condition (9). We set $W = e^w = Re^{i\theta}$ in (8) and (9) to obtain

(10)
$$R < 2\cos\Theta$$

and

(11)
$$(\log R - A)^2 + \Theta^2 < B^2,$$

respectively. The relations (10) and (11) define domains in the W – plane that correspond to the domains defined by (8) and (9) in the w – plane. If |z| = r is small, it is clear that the domain (11) lies in the domain (10). As |z| = r increases, the boundary of (11) eventually makes contact with that of (10) before r reaches 1.

Let us consider this first point of contact. At such a point we must have

(12)
$$\log R = \log (2 \cos \Theta) = A + \sqrt{(B^2 - \Theta^2)}$$

and

(13)
$$\frac{\mathrm{d}R}{\mathrm{d}\Theta} = -2\sin\Theta = \frac{-\Theta}{\sqrt{(B^2 - \Theta^2)}} e^{A + \sqrt{(B^2 - \Theta^2)}}.$$

If we eliminate Θ from (12) and (13), then we obtain

(14)
$$\frac{1}{2}Be^{A} = \sqrt{(B^{2} - \Theta^{2})} e^{-\sqrt{(B^{2} - \Theta^{2})}}.$$

Now (13) and (14) yield

$$\frac{\Theta}{\sin\Theta} = B.$$

If we let $E^{-1}(x)$ and $S^{-1}(x)$ denote the inverse of $E(x) = xe^{-x}$ and $S(x) = x/\sin x$,