

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0096|log78

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A NOTE ON SYMMETRICALLY CONTINUOUS FUNCTIONS

DAVID PREISS, Praha (Received January 26, 1971)

Dedicated to the memory of Prof. VOJTĚCH JARNÍK

A function f defined on the real line R is called symmetrically continuous (on R) if for every $x \in R$

$$\lim_{h\to 0} (f(x+h)-f(x-h))=0.$$

H. FRIED [1] proved that every symmetrically continuous function is continuous at every point of a dense subset of R. In the present paper it is proved that such a function must be continuous almost everywhere.

Lemma. Let $E \subset R$ be a measurable set, let 0 be a point of density of E (see [2]). Then there exists $\varepsilon > 0$ such that for every $x \in (0, \varepsilon)$ there exists $t \in E \cap (\frac{1}{3}x, \frac{1}{2}x)$ such that $2t \in E$, $4t - x \in E$.

Proof. We denote |A| the measure of A, $2A = \{y \in R; y = 2z, z \in A\}$, $A - a = \{y \in R; y = z - a, z \in A\}$. Let ε be such a positive number that for every $h \in (0, \varepsilon)$ it is $|E \cap (0, h)| > \frac{13}{15}h$. Let $x \in (0, \varepsilon)$. We set $E_1 = E \cap (\frac{1}{3}x, \frac{1}{2}x)$, $E_2 = (2E_1) \cap E$, $E_3 = [(2E_2) - x] \cap E$. Now an easy calculation shows $|E_1| > \frac{1}{10}x$, $E_1 \subset (\frac{1}{3}x, \frac{1}{2}x)$, $|2E_1| > \frac{1}{3}x$, $2E_1 \vdash (\frac{2}{3}x, x)$, $|E \cap (\frac{2}{3}x, x)| > \frac{1}{3}x$, $|E_2| = |E \cap (2E_1) \cap (\frac{2}{3}x, x)| > \frac{1}{3}x - 2(\frac{1}{3}x - \frac{1}{3}x) = \frac{1}{15}x$, $|2E_2| > \frac{2}{15}x$, $|(2E_2) - x| = |2E_2| > \frac{2}{15}x$, $E_3 \subset (\frac{1}{3}x, x)$, $|E_3| > \frac{2}{3}x - (\frac{2}{3}x - \frac{8}{15}x + \frac{2}{3}x - \frac{2}{15}x) = 0$. Therefore $E_3 \neq \emptyset$. Then there exists $t_3 \in E_3$, $t_3 = 2t_2 - x$, $t_2 \in E_2$, hence $t_2 = 2t$, $t \in E_1$ and t is the required point.

Theorem. Let f be a symmetrically continuous function. Then f is continuous almost everywhere.

Proof. We put

$$\operatorname{osc} f(x) = \lim_{h \to 0+} \sup_{+} \{ |f(x_1) - f(x_2)|; |x_1 - x| < h, |x_2 - x| < h \},$$

$$\varphi(x) = \min (\operatorname{osc} f(x), 1).$$

The function f is continuous at $x \in R$ if and only if $\varphi(x) = 0$. According to the Fried's result $\varphi(x) = 0$ at every point of a dense subset of R.

At first we prove that φ is symmetrically continuous. Let $x \in R$. Let ε be an arbitrary positive number, let $\delta > 0$ be such that for every $h, 0 < |h| < \delta$ it is $|f(x+h)-f(x-h)| < \frac{1}{2}\varepsilon$. If $0 < |h_0| < \delta$, $K < \csc f(x+h_0)$, then there exist x_n^1, x_n^2 such that

$$x + h_0 = \lim_{n \to +\infty} x_n^1 = \lim_{n \to +\infty} x_n^2, \quad |f(x_n^1) - f(x_n^2)| > K.$$

We set $y_n^1 = 2x - x_n^1$, $y_n^2 = 2x - x_n^2$. Then $x - h_0 = \lim_{n \to +\infty} y_n^1 = \lim_{n \to +\infty} y_n^2$. For large n it is $|f(x_n^1) - f(y_n^1)| < \frac{1}{2}\varepsilon$, $|f(x_n^2) - f(y_n^2)| < \frac{1}{2}\varepsilon$, and it follows that $\operatorname{osc} f(x - h_0) \ge K - \varepsilon$. From this fact it is easy to deduce that φ is symmetrically continuous.

Now φ is measurable. Suppose at there exists $\alpha > 0$ such that $\varphi(x) > \alpha$ in a set A of positive measure. Let $P \subset A$ be a perfect set, |P| > 0.

For $x \in R$ we choose $\delta(x) > 0$ such that for $0 < |h| < \delta(x)$ it is $|\varphi(x+h) - \varphi(x-h)| < \frac{1}{6}\alpha$. Let $A_k = \{x \in P, \ \delta(x) > 1/k\}$. From the fact that $P = \bigcup_{k=1}^{\infty} \overline{A}_k$ it follows that there exists k_0 such that $|\overline{A}_{k_0}| > 0$. Let x_0 be a point of density of $P_1 = \overline{A}_{k_0}$. We can suppose that $x_0 = 0$. We choose $0 < \varepsilon < \min(1/k_0, \frac{1}{2}\delta(0))$ according to the lemma (where $E = P_1$). Let $x_1 \in (0, \varepsilon)$ such that $\varphi(x_1) = 0$. Then there exists $t \in P_1 \cap (\frac{1}{3}x_1, \frac{1}{2}x_1)$ such that $s = 2t \in P_1$, $x_2 = 4t - x_1 \in P_1$. We set $d = \frac{1}{2}(x_1 - x_2)$. Let $u \in A_{k_0} \cap (\frac{1}{3}x_1, \frac{1}{2}x_1)$, $|u - t| < \min(\frac{1}{2}\delta(d), \frac{1}{4}\delta(0))$. We put $s_1 = 2u - s$. It is

$$\begin{aligned} \left| s_{1} \right| &= \left| 2u - 2t \right| < \delta(d) \,, \quad \left| d - s_{1} \right| < \left| d \right| + \left| s_{1} \right| < \delta(0) \,, \\ \left| \varphi(s_{1} + d) - \varphi(s_{1} - d) \right| &\leq \\ &\leq \left| \varphi(d + s_{1}) - \varphi(d - s_{1}) \right| + \left| \varphi(d - s_{1}) - \varphi(-(d - s_{1})) \right| < \frac{1}{3}\alpha \,, \\ \left| x_{1} - u \right| &< \frac{1}{k_{0}} < \delta(u) \,, \quad \left| x_{2} - u \right| < \frac{1}{k_{0}} < \delta(u) \,, \\ s_{1} - d &= u - (x_{1} - u) \,, \quad s_{1} + d &= u - (x_{2} - u) \\ \left| \varphi(x_{1}) - \varphi(s_{1} - d) \right| &= \left| \varphi(u + (x_{1} - u)) - \varphi(u - (x_{1} - u)) \right| < \frac{1}{6}\alpha \\ \left| \varphi(x_{2}) - \varphi(s_{1} + d) \right| &= \left| \varphi(u + (x_{2} - u)) - \varphi(u - (x_{2} - u)) \right| < \frac{1}{6}\alpha \\ \left| \varphi(x_{1}) - \varphi(x_{2}) \right| &\leq \left| \varphi(x_{1}) - \varphi(s_{1} - d) \right| + \left| \varphi(s_{1} - d) - \varphi(s_{1} + d) \right| + \\ &+ \left| \varphi(s_{1} + d) - \varphi(x_{2}) \right| < \frac{2}{3}\alpha \,. \end{aligned}$$

But $\varphi(x_1) = 0$, $\varphi(x_2) > \alpha$ which is a contractidion. Hence it follows that $\varphi(x) = 0$ a.e., therefore f is continuous almost everywhere.

The following example shows that the set of points at which a symmetrically continuous function is not continuous can be uncountable.