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A NOTE ON X-STOCHASTIC OPERATORS

Ivo MAREK, Praha

(Received October 27, 1970)

Dedicated to the memory of Prof. VoiTECH JARNIK

A concept of a A -stochastic operator in a Banach space with a cone J¢ is intro-
duced and some of its properties are studied. In particular, a characterization is
given for a class of ) -stochastic operators in a Hilbert space to have symmetric
projections corresponding to the principal eigenvalue 1. The characterization leads
to the doubly S -stochastic operators.

E. J. BELL and H. G. DAELLENBACH have shown in [1] a necessary condition for
the limiting matrix P of an irreducible Markov chain 1 = (tjk), 15j,kEmto
have a special form. The sufficiency of this condition is obvious [2, p. 167 —168].

N

Theorem A. Let T be an irreducible stochastic matrix and let P = lim (1/N) ) T*

k=1

be the corresponding limiting matrix. Then for P to have the form P = (p;) with
(1) Pjx =
it is*necessary for T to satisfy
(2) Z tjk == l .

Remark. It is obvious that condition (1) is equivalent to the requirement
(3) Z Pjx =

. k=1

for Tirreducible. However, (3) is a more general condition than (1) since it is meaning-
ful also for the reducible case.

The aim of this note is to show, besides other things, an infinite dimensional

analogue of Theorem A. Since a general concept of positivity is used in our formula-
tion the result presented is more general than that of [ 1] even for the finite dimensional
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case. In our opinion, the infinite dimensional generalization might be useful in the
theory of Markov processes [3].

Let % be a rgal or complex Banach space, #’ the dual space of continuous linear
functionals on % with the norm |x'|| = sup {|x'(x)| : |x|| < 1} and [#] the space
of bounded linear transformations of % into # with the norm ‘ TH = sup {”Tx" :
XeEW, Ix[l < l}. If % is real then Z denotes its complexification, i.e. £ = ¥ @ i¥
with the norm l[z” = sup {”xcosS + ysin .9” rz=x+1iy, x,ye#, 0< 9 <
< 2n}. We also use the symbol Z for % if % is complex.

It is assumed that there exists a normal cone % [4] which generates ¥, i.e. X~
satisfies (i) A" + A < o, (ii) at” = A for a 2 0, (jii) H" n (=) = {0}, (iv) X
is closed, (v) there is a 8 > 0 such that for all x, y € # one has Hx +y| = §||x|
(vi) y € % can be written as y = y* — y~ with y*, y~ e A"

Let Te [#] and % be real. Then T defined as Tz = Tx + iTy, where z = x + iy,
x, y€ %, called the complex extension of T, clearly belongs to [Z]. Let 4 e[Z].
- By a(A) we denote the spectrum of A4, i.e. the set of all singularities of the resolvent
operator R(4, A) = (AI — A)™', where I is the identity operator. By r(4) is denoted
the spectral radius of 4, i.e. r(A) = sup {|4| : Ae o(4)}. If ¥ is real and Te[#],
then we set o(T) = o(T) and r(T) = r(T); furthermore R(A, T) = (A — T)™".

Let 1, be an isolated singularity of R(4, T), where Te [Z]. Then [10 p. 305]

R(AL T) =Y AL — Ao) + Y. BiA — 2p)7F,
k=0 k=1
where A,_, € [Z] and B,e[Z], k = 1,2, ... and
B, = —1—'[ R(A, TYdA, Bywy =(T—Ad)Bi, k=1,2,...
2ni Je,

with C, = {A: |/1 - Ao| = Q0» 0o > 0} and such that K, no(T) = {4,}, where

Ko={4: |A— /10| < go}. If there is an index g for which B,+ 0 and B,,, = 0@

where © denotes the zero-operator, then 4, is called a pole and g its multiplicity.
Let us denote by ) the dual cone to £, i.e.

A ={xe¥ :{x,x)20 forall xex},

where {x, x') denotes the value x'(x).

We call a vector £ € X" quasiinterior if (£, x> #+ 0 for all x’ e X, x’ %+ 0.

A X -positive linear functional £’ (ie. {x, %) 2 0 for xe X’ ) is called strictly
positive if {x, £')> + 0 whenever xe X, x * 0.

An operator Te [#] is called 2 -positive, or shortly positive, whenever TX" < X'.

A positive operator Te [#] is called  -irreducible, or simply irreducible, if for
every couple x € ¥, x + 0,x" € A", x’ # 0, there exists a positive integer p = p(x, x')
such that {T?x, x’) # 0. This concept was introduced by I. SAWASHIMA and T was
called originally semi-non support in [8].
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A set ' < KA is called A -total if the relations

{x,x'>=20 forall x'es#’
imply that x € .

A X -positive operator Te [#] is called X -stochastic (with e and ") if there is
a quasiinterior element e € 4" and a X -total set #’ such that

(Te,x') =<e,x'y) =1 forall x'es'.

Let Te [#]. We denote by T’ the transposed operator, i.e. Ty’ = x’ if and only
if {Tx,y'y =<x,x')forall xe%.

Let # < X have the following property: From {(x, x> = 0 for all x € J# it
follows that x’ € #”". We call T, where T'e [#] is a X -positive operator, #”'-stochastic
(with e’ and ), if there is a strictly positive element e’ € % such that

{x, Ty =<{x,¢'Y) =1 forall xe.

If T is A -stochastic and J#"'-stochastic simultaneously, then T is called (.1” , A ')-
stochastic. In particular, if % is a Hilbert space, and # = A", and e = ¢, then
a (A, A")-stochastic operator T is called doubly 4 -stochastic.

Let % be a Hilbert space with the inner product (.,.). Let Te [ #]. Then T*
denotes the adjoint or hermitean adjoint operator to T, i.e. T*y = x if and only if
(x,2) =(y, Tz) forall ze ¥.

To be able to formulate the promised analogue of the result due to Bell and
Daellenbach mentioned above we consider a special class of X -stochastic operators.
Denote by P the class of A -positive operators in [#] whose spectral radii are poles
of the corresponding resolvent operators, i.e.

‘ P={Te[¥]:TH < A, (T) is a pole of R(, T)}.

In what follows we use the Laurent expansion of the resolvent operator with
Ao = r(T) exclusively and By, B,, ... are elements of the spectral decomposition
of T belonging to r(T).

Proposition 1. Let Te B and let q be the multiplicity of n(T) as a pole of R(A, T).
Then B, is a X -positive operator.

Proof. For Areal and 4 > r(T) one has

(4 = r(T))" R(A, T) =B, +:g:(l — r(T))" B, +k§0(}' _ r(T))q+k A,

hence
B, = lim (A - r(T))" R(A, T)

A=-r(T)
A>r(T)
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and the assertion is a consequence of the 4 -positivity of R(4, T) for 2 > r(T) and
the closedness of .

Proposition.Z. Let Te'B be a A -stochastic operator. Then the element e is an
eigenvector of T corresponding to the eigenvalue r(T) = 1 and this eigenvalue is
a simple pole of R(4, T), i.e. B, = 6.

Proof. It follows from the relations {Te, x> = {e, x’) = 1 for all x’ € #’ that
Te — e and e — Te are both in . By virtue of (iii) in the definition of a cone we
obtain that Te — e = 0 and thus the value 1 is an eigenvalue of T with the eigen-
vector e. We shall show that 1 = r(T). Since #(T) is a pole of R(4, T), r(T) is an
eigenvalue of T. By virtue of our assumption B, + @, where g is the multiplicity
of r(T) as a pole of R(4, T), and, according to Proposition 1, B, is a J -positive
operator. Since e is a quasiinterior element of )" we see that there is a y' € A", for
which

0 < <e, Byy'> =<Bge, y'>

and consequently Bye + 0. In case r(T) % 1 we would have [10, p. 299] B,e = 0.
It follows that Bje = e and r(T) = 1. It remains to show that g = 1. Let us assume
that ¢ > 1. Then

0< <quy yo = <Bq'1(Te - e)’ yr="20.

This contradiction shows that the assumption g + 1 was false and hence q = 1;
Proposition 2 is proved.
Similarly one proves the following dual assertion.

Proposition 3. Let Te B be a A '-stochastic operator. Then the element €' is an
eigenfunctional of T’ corresponding to the eigenvalue r(T) = 1 and this eigenvalue
is a simple pole of R(A, T).

We say that an operator Te [#] has property (S) if every A € o(T) for which I,ll =
= r(T) is a pole of the resolvent operator R(4, T).

Proposition 4. Let Te B have property (S) and let T be either a* A -stochastic
operator or a A "'-stochastic operator. Then
1 X,
lim|— ) T"— B[ =0.
[wzim -]

Proof. According to the generalized Pringsheim theorem concerning the power
series with J -positive elements [9] all singularities of R(A, T) on the circumference
I).I = 1 are simple poles. The result is then a consequence of the Cauchy theorem on
residui of R(4, T) (see [6]).

We remark that a S -irreducible operator Te P always has property (S) if ¥ is
not only a Banach space but a Banach lattice (see [7], [5]).
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Theorem B. Let % be a real Hilbert space and let Te [¥], TH <A, T*X < X,
be a A -stochastic operator (with e and 3#") such that its spectral radius is an isolated
pole of the resolvent operator R(2, T). Then

BYe = B,e
if and only if T* is A -stochastic (with e and H#").
Proof. The sufficiency of the condition is obvious. For if
(T*e, x> = {e,x'y =1 forall x'eH#H',

then T*e = e, whence e = Bfe.
The necessity follows easily from the relations

(T*e, x'y = {T*Bfe, x'y = (Bie,x') =<e,x') =
valid for all x" € #’'. Thus, Theorem B is proved.

In the particular case of irreducible 2 -stochastic operators we have

Theorem C. Let % be a real Hilbert space, and let Te [¥], TH < A, T*H <
< A, be an irreducible A -stochastic operator (with e and #") such that its spectral
radius is an isolated pole of the resolvent R(A, T). Then

Bf = B,
if and only if T* is A -stochastic (with e and #").
Proof. It is enough to show that Bfe = B,e implies B} = B,. We have that
B,x = A(x) e,

where A(x) is a bounded linear functional on % which is nonnegative on #". According
to the Riesz representation theorem [ 10, p. 245] there is an element v € X" for which

A(x) = (x,v).
Moreover, v is orthogonal to the set
T={xe¥:A(x) =0} = {xe¥ :B,x = 0}.
Thus v = Bfv and we have
B,x = (x, Bfv) e = (B,x, Bfv)e.

Since the range of B} is one dimensional [8] we have that Bfv = aBfe for some
a> 0.
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