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ON A CLASS OF LINEAR DIFFERENTIAL EQUATIONS OF ORDER n,
n=3

VALTER SEDA, Bratislava
(Received June 19, 1963, in revised form July 5, 1966)

In the papers [1], [2] the transformation theory of linear differential equations (or
equations, as we shall write for short) was worked out. In this paper some applications
of that theory are given. Besides the results of that theory the notations introduced
in it will be used. Further I will denote some open interval and it will be assumed
n = 3.

The simplest homogeneous equation of the n-th order is the eqhation

o) =) &2
v (o) =) T3 = 0

By this equation and by the interval I the class C of all equations of the form

@ (W) E):ny" + ,,:Zz (:) 7l 3:;{ =0, p(¥)eCll), k=2...n,

which are locally equivalent to the equation (1), is defined. As we shall see, the
equations of this class have similar oscillatory properties as the equation (1). Further
the class C will be studied in detail.")

The meaning of the equation (2) being locally equivalent to the equation (1) is
given by the following definition ([2], Definition 5).

1 Originally the equations of the class C were called the equations with zero fundamental
invariants. This title is mentioned in the paper [3], which follows up this paper. Since it was shown
that in this case there is no need for the notion of fundamental invariants, this notion was omitted
and the title of this paper was changed. The equations with zero fundamental invariants are
dealt with in the papers [4], [5].
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Definition 1. Equation (2) is called locally equivalent to the equation (1) if there
exists a solution u(x) # 0 of its accompanying equation of the 2-nd order such that
on each interval I,, < I, where u(x) # 0, the equivalence (1) I;; ~ (2) I, I, being
an interval, holds.

Recall that under the accompanying equation of the 2-nd order (in short the
accompanying equation) is meant the equation

d%y
3 — 4+
() dx2 n+1

p(x)y=0.

In the paper [2] the following properties of the equations belonging to the class C
were proved:

1. If the equation (2) is of the class C and r(x), s(x) form a fundamental set for the
equation (3), then on each interval I3, in which s(x) % 0 the equivalence (1) I7; ~
~2) I3 {&(x), c/\/(|5'(x)|"'1)}, where &(x) = r(x)[s(x), &(I3,) = IT; and ¢ # 0 is
a constant, is valid.

2. The coefficients py(x) of the equation (2) of the class C fulfil the relation p,(x) €
€ C,,_,,(I), k=2,...,n

3. For each f(x) € C,_(I) there exists one and only one equation (2) of the class C
whose coefficient p,(x) = f(x), x € I. This equation shall be denoted by I(y, f(x)) =
= 0. Evidently I,(y, 0) = 0 is identical with the equation d"y[/dx" = 0.

4. Each equation of the class C is self-adjoint on I. -

5. Let (3), (3,) be the accompanying equations of the equation I,(y, f(x)) = 0,
I(v, g(&)) = 0, respectively. Then it holds: I,(v, g(¢)) =0 I, ~ I(y,f(x)) =0
L&), e[ J(E@I} < (30) g ~ 3p) Lafé(x) o V(D) ¢+ 0, ¢y 0
are constants.

By its properties 1 — 5 the class C is similar to the class of equations (3). In particular,
the property 5 means that the equivalence of two equations of the class C is found if
and only if their accompanying equations are equivalent.

The operator standing on the left side of the equation (1) is decomposable into
a product of n equal factors. The same assertion is valid for the operator Lon the left
side of the equation of the class C. Here the decomposition into regular operators is
considered ([1], p. 400).

Theorem 1. Assume there exists a solution s(x) # 0, x €1, of the equation (3).
Then the equation(2) is of theclass C if and only if the operator [s(x)]*" L is decom-
posable on I into a symbolic product of n equal factors

@  [WL=L..LL
defined by the relation .

©) L(y) = s »' = (n = ) (<) s(x) -
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Proof. Let the equation (2) be of the class C. Then, by the property 1, (1) I}, ~ (2)
I{&(x), t(x)}. From the decomposition of the operator Linto the product of n equal
operators LY, Lj(v) = dv[d¢ the decomposition

1
[EG)T

into the product of n equal operators L, of the first order with the coefficient at their
first derivative equal to 1/&'(x), follows by Corollary to Theorem 9, [1]. Here L{(v) =
= 0I%, ~ Ly(y) = 0 I{&(x), #(x)}. From these two conditions and from the fact that
f(x) = c/\/(|€’(x)|"“) we obtain that

, o n=18(x)
(7) 1(3’) f()( + 2 f())

If in the function &(x) = r(x)[s(x) such a solution r(x) of the equation (3) is chosen
that the Wronskian of the functions r(x), s(x) is equal to —1, then (4) follows from
(6) and (5) from (7).

Conversely, let the decomposition (4) on I exist, where the operator L, is given
by (5). If we put &'(x) = 1/[s(x)]% #(x) = [s(x)]""*, x €I, then L}(v) = 0 I, ~
~ Ly(y) = 0 I{&(x), t(x)}. Further &(x), #(x) € C,(I) and 1/([s(x)]2 &(x))= 1. From
this, by virtue of Corollary to Theorem 10, [1], follows (1) I§, ~ (2) I{¢(x), {(x)}, and
the theorem is proved.

(6) L= Ll e LlLl

Remark 1. Theorem 1 also follows from Theorem 4.4 and Remark 4.5a) in [4],
p. 180.

If the non-regular operators are considered, then we get from Theorem 1

Corollary. The equation (2) belongs to the class C if and only if, for an arbitrary
solution s(x) % 0 of the equation (3) there exists on I a decomposition of the operator
" [s(x)]?" Linto the symbolic product (4) of n equal factors given by the relation (5).

Theorem 2. Let r(x), s(x) form on I a fundamental set for the equation (3). Then
the equation (2) is of the class C if and only if the functions

®) [T [T k= 1,m
form a fundamental set on I for this equation.

Proof. Let the equation (2) be of the class C and let I3, < I be an arbitrary interval
on which s(x) % 0 and whose each endpoint is either a zero of s(x) or an endpoint
of I. Then, by virtue of property 1, the functions

L)) S
) T’ k=1,..,n,
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form a fundamental set for (2) on I3,. Here £(x) = r(x)/s(x). From this we obtain
that the functions (8) also form a fundamental set for the equation (2) on I3, as well
as on the union of all intervals I,. From the continuity of the coefficients of the equa-
tion (2) and from the fact that r(x), s(x) € C,(I) it follows that the functions (8)
satisfy the equation (2) at the common endpoints of the intervals I7,, too.

Let the functions (8) form a fundamental set for the equation (2) on I and let I3,
have the same meaning as before. We put &(x) = r(x)[s(x), #(x) = 1/\/(|&'(x)|"™").
Evidently &(x), #(x) have all properties of the carrier of equivalence. Since y,(x) are
equal, up to a multiplicative constant, to the functions (9), the fundamental set
o(§) = &% k = 1,..., nfor the equation (1) is transformed into a basis of solutions
of the equation (2) onI,,. From this it follows (1) If; ~ (2) I3,, and thus the equation
(2) is shown to be of the class C.

Remark 2. Theorem 2 also follows from Lemma 4.1 in [4], p. 179.

In what follows, we shall take the same basis r(x), s(x) of solutions of the equation
(3). Then from the Theorem 2 it follows that the general solution of the equation (2)
belonging to the class C can be written in the form

(10 ¥ = el el

€y ..+ C, are constants. To this expression the polynomial

(1) P(o) = L™

of the degree at most n — 1 may be associated in a one-to-one manner. This
polynomial will be called the auxiliary polynomial. It will be said to be dominating
if it is exactly of the degree n — 1. The set of all solutions of the equation (2) belonging
to the class C is isomorphic to the set of all polynomials which are of the degree at
most n — 1. From now on, we shall not consider the trivial solution of the equation
(2) and its corresponding polynomial.

From the relation between the function (10) and the polynomial (11) it follows that
this function can be similarly factorated as its auxiliary polynomial.

Lemma 1. The auxiliary polyﬁomial PJg) is of the degree n — 1, 1 <1< n
and can be factorated into the factors

(12) 0 =élcke""‘ =cfe~e1).--(e—0n-1), c*0,

if and only if the function y given by the relation (10) can be written in the form
1) ) = alsl " [() — xS ) = eas ()]
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Proof. If (12) is valid, then y(x) = [s(x)]"‘élck[r(x)]"" [s(x)]*~". Further, on

the intervals I3, where s(x) # 0 we can write

) = [P~ L alrfsCoy ™ =
= T (el = 0] . [ — -]} =
= e[s(1'7 [) = €1 (9] - [H4) = ama 9]

From the continuity of the functions on both sides of the equation (13) this equality
is valid at the zeros of s(x), too.

The converse implication can be proved on the interval I3,.
Corollary. The product of exactly n — 1 solutions of the equation (3) is a solution
of the equation (2) belonging to the class C.

Proof. The product y*(x) of exactly n — 1 solutions of the equation (3) can be
written in the form (13), where 1 S IS n, ¢; %0, ¢y, ..., 0y (if I = n, y*(x) =
= ¢,[s(x)]""!) are some numbers. Let i cx@" " * be a polynomial with g, ..., @s—;
being its roots. By Lemma 1, the equ‘:li'ty y¥(x) = f:c,,[r(x)]"" [s(x)]*~! holds,
which implies, with respect to Theorem 2, the assertiokn=.l

Remark 3. Corollary also follows from Corollary to Lemma 5, [5], p. 31.
From the Lemma also follows

Theorem 3. The auxiliary polynomial (12) of the solution y(x) of the equation (2)
belonging to the class C has a decomposition

(12) Pyo) = cfe — e1) - (¢ = em) (€* + 10 + B1) ... (@* + o0 + B)

where 04, ..., Qm> %15 By, ..., 0, B, are real numbers, not necessarily different and
By — o}[4>0,...,B,— 2[4 >0, m+ 2g =n — 1 if and only if the function y
can be written in the form

(13" Wx) = e[s(x)]'"* [r(x) = e1 5(x)] ... [1(x) — em s(x)] -
. {[r(x) + %s(x)] + (8, — o2/4) [s(x)r}

e+ %s(:o]’ + (B = 319 LGP}

Proof. In (12’) the expressions @* + a,¢ + f,, W =1,...,q are obtained by
multiplying the factors with the complex conjugate roots o,, + it,. With them the
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factors of the form r(x) — (o, + it,) s(x), r(x) — (o, — it,) s(x) are associated,
which by multiplying each other give [r(x)]* + a,, r(x) s(x) + B.[s(x)]> = [n(x) +
+ (0f2) ST + (B — o2/4) [s() T2

By a converse procedure the second part of the theorem will be proved.

With help of the mentioned Corollaries to Theorem 2 we shall prove some theorems
concerning the zero-points of the solutions of the equation (2) belonging to the class C.
Here the definition of the type for the equation (3) introduced in [6], p. 231, and the
following definition will be used.

Definition 2. The equation (2) is of the type k (>1) on the interval I, < I if each
of its solutions has at most k zeros on I, and there exists a solution of this equation
having exactly k zeros on I,. Here each zero-point is counted as many times as its
multiplicity indicates.

Theorem 4. The equation (2) of the class C is of the type k(n — 1) on the interval
I, = I if and only if the equation (3) is of the type k on I,.

Proof. If (3) is of the type k on I, then every solution of the equation (2) of the
class C being of the form (13’), by the Theorem 3, has at most k(n — 1) zero-points
on I; and at the same time there exists a solution of this equation having exactly
k(n — 1) zero-points on I,. Thus a one-to-one correspondence between the type of
the equation (3) and that of the equation (2) is given.

Corollary. If the equation (2) of the class C is non-oscillatory on the interval I,
(that means if it is of the type n — 1 on I,), then there exists a non-vanishing on I,
solution of this equation.

From the Theorem 3 immediately follows

Theorem 5. Let the equation (2) of the class C be of odd order. Then each solution
of this equation, whose auxiliary polynomial is dominating and having only

complex conjugate roots, is non-vanishing on I.

Theorem 6. Let the equation (2) of the class C be of even order. Then it has a non-
vanishing solution on I if and only if it is non-oscillatory on I.

Proof. Let the solution y(x) of this equation have no zero-point on I. If its auxiliary
polynomial is dominating, then this polynomial is of odd degree and has at least one
root ¢;. In the decomposition (13’) a non-vanishing on I factor r(x) — ¢, s(x)
corresponds to it. Therefore, both the equation (3) and the equation (2) of the class C
are non-oscillatory on I. If the auxiliary polynomial of the solution y(x) is not
dominating, then in the decomposition (13’) the factor [s(x)]'"*, I 2 2 without
zeros'on I occurs and the assertion is valid again.

The second part of the Theorem was stated in Corollary to Theorem 4.
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Remark 4. Theorem 5 strengthens the Remark 7 in [5], p. 32. Theorem 6 com-
pletes Theorem 1 in [5], p. 31.

Let now a €I be an arbitrary point. Consider the set M(a) of all solutions y(x) of
the equation (2) of the class C having a zero at a. The zero-points of the solution
¥(x) € M(a) situated on the right (on the left) from the point a, provided they exist,
can be enumerated. On the right let they be the points

501560, 5...508,.1 58,5 ...5084-1)S0-1 = ... S8G4p-1) S ...
and on the left

e S A 3-) S S A2y S A - S .S A S Aoy S .. S

fa,<a_;=a.

Each point is counted as many times as its multiplicity indicates. If, e.g., the point a
is a k-tuple zero-point of the solution y(x), then @ = a; = ... = a,_; < a, (if there
exists the last point) and a_; < a_y-y) = ... = a_, = a (if the point a_, exists).

Definition 3. Let y(x) e M(a), and let k be a natural number. Then the point
Ayn—1)(@-ka-1y) Will be called the k-th successive (the k-th preceding) conjugate
point to the point a of the solution y(x). Further the k-th successive (the k-th preceding)
conjugate point to the point a of the equation (2) belonging to the class C will be
defined as the lower bound of the k-th successive (as the upper bound of the k-th
preceding) conjugate points to the point a of all solutions y(x) € M(a).

If there is no solution y(x) € M(a) having the k-th successive (the k-th preceding)
conjugate point to the point a, then we shall say that there does not exist the k-th
successive (the k-th preceding) conjugate point to the point a of the equation (2)
belonging to the class C.

Theorem 7. Let the equation (2) be of the class C, let k be a natural number, and
let yo(x) be the solution of the considered equation having (n — 1)-tuple zero-point
at the point a € 1. Then the k-th successive (the k-th preceding) conjugate point to
the point a of the equation (2) exists if and only if there exists the k-th successive
(the k-th preceding) conjugate point to the point a of the solution y(x). If both the
points exist, then they are equal to each other.

Proof. The theorem will be proved only for the successive conjugate points. The
case of the preceding conjugate points can be dealt with similarly. Each solution y(x) €

€ M(a) contains a factor [;(;c_i]‘, 1sksn-1, .;(;)’ being a solution of the equation
(3) with a simple zero g, in its decomposition (13’). Here [:-(75]"‘ ! appears if and only
if y(x) are linearly dependent with y,(x). Therefore the k-th successive conjugate
point a, to the point a of the solution y,(x) is identical with the k-th successive con-

jugate point to the point a of the solution s(x). Since the solutions y(x) € M(a) are
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not multiples of yo(x), the product of at most n — 1 solutions of the accompanying
equation may appear in the decomposition (13'). From this, by virtue of the Separa-
tion Theorem, the statement of the theorem follows.

From the proof it can be easily seen the following

Corollary. The conjugate points of the equation (2) of the class C are identical
with the conjugate points of its accompanying equation (3). '

From the proof of the last theorem it also follows that except the solution yo(x),
all solutions y(x) € M(a) being products of n — 1 solutions of the equation (3) have
the same conjugate points as the equation (2). Further, we see that all zeros of the
solution yo(x) are (n — 1)-tuple, whereby for even n the values of the function
¥3~1)(x) change their sign at these points while for n odd they are of the same sign.

From the Separation Theorem, using Theorem 3, we get that the behaviour of the
zero-points of the other solutions y(x) of the equation (2) belonging to the class C is
the same between two successive zeros of the solution yo(x), that is, if a, b and ¢, d
are two pairs of the neighbouring zero-points of the solution y,(x), then y(x) has the
same number of zeros on (a, b) as on (¢, d), whereby the order of the multiplicity of
the zeros is the same on both the intervals. In a similar manner we obtain this generali-
zed separation theorem.

Theorem 8. Let the equation (2) be of the class C and let y(x) be its arbitrary
solution with (n — 1)-tuple zeros. Then in the case of even n every solution y(x) of
the equation (2) that is not a multiple of y,(x) must vanish between any two succes-
sive zeros of yo(x). If n is odd, this statement holds for any solution y(x) of the
equation (2) with at least one zero-point on I.

Let us consider the n-th order equation with constant coefficients defined for n
even by the symbolic product

T NIk 21 4 5]
(14,) @ +(n-1) Ld—c; +(n-3)?]... am +12|v=0, ¢e(—o, ),
and for n odd by the relation
& 1 ¢ 1 e 1d
18) | —=+@mE-1)*||=+@m-3?*.]—=+22|=v=0, — 00, ©).
( ) Ldez (n )- \-dgz (n )- dez _dév EE( Y w)
The general solution of the equation (14,) is
n/2
(15,) %) -.Zl[c, cos (2k — 1) & + d, sin (2k — 1) ¢],
¢, and d, are constants, while that of (14,) is
< (n—1)/2 -
(15,) . (&) =co + Y, [cicos2ké + dysin 2k¢],
k=1
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¢, and d, are constants. From the definition of the equations (14,), (14,) it follows
that they are of the form

@) LR ( )qk«) o

df" k=2 é" k

With respect to the equalities
n/2 1 (n—1)/2 1
2 (2k - 1) = ( ), n is even, z (2k)? = ( ), nis odd ,

we obtain g,(¢) = (n + 1)[3. Thus the accompanying equation of the equations
(14.), (14,) is the equation

(3) — +0v=0.

Further it is true that the equations (14,), (14,) are of the class C on the interval
(=00, 0). In fact, because of the trigonometrical identity

(cos &~ (sin &)~ =Re {2..11 kll"z" "21( 1)"'( - )(k; 1) ei(n-l-zm—znt} .

k=1,...,n

we have that with the functions (15,), (15,) the functions
(16) (cos &) *(sin&)*~', k=1,..,n

are the solutions of (14,), (14,), too. Conversely, by making linear combinations
from the system (16) we get the functions (cos &)""2'"*(sin &)*~! ,k =1,...,n — 21
forl =0,1,...,(nf2) — 1,ifnisevenand ! = 0, 1, ..., (n — 1)/2if n is odd, respecti-
vely. From these functions, by means of the relation

cos(n—1—-2)¢ +isin(n—1-2)¢=

)

the functions (15,), (15,) can be obtained. Thus the functions (16) form a fundamental
set for the equation (14,), (14,), respectively. By Theorem 2 these equations belong to
the class C on (— oo, o). From this, in virtue of the property 5 of the equations

belonging to the class C and of the equivalence (3')I; ~ (3) 1,1, is an interval, it
follows

Theorem 9. If the equation (2) is of the class C and n is even (n is odd), then there
exists an interval I, such that (14,) I, ~ (2)1((14,) I, ~ (2)1).
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With regard to Definition 1 and Theorem 9 the equation (1) and the equation (14,),
(14,) will be called a typical non-oscillatory and oscillatory equation of the class C,
respectively.

Consider the nonhomogeneous equation

(17) - . L(y) = Pass(x), Par1(x) € Co(I),

whose corresponding homogeneous equation (2) is of the class C.

Assume the equation (2) is non-oscillatory on I and p, . ,(x) has exactly k zeros on
this interval, 0 < k < +co. Then (1) I, ~ (2)I{é(x), (x)}, I, is an interval. If x(¢)
is the inverse function to &(x), ¢,(¢) = 1/t[x(¢)] and

(18) 5—6,. = [¥OF 18 Pasa[X(O)], el

then in virtue of Theorems 1 a 8, [1], (17) I ~ (18)I,{x(¢), t,(£)} holds. The right
side of (18) has exactly k zero-points. Using Rolle’s Theorem successively we get that
every solution of this equation has at most k + n zeros in I,. The same is true for
the solutions of the equation (17) on I. This completes the proof of

Theorem 10. Let the corresponding homogeneous equation of the equation (17)
be of the class C and let be non-oscillatory on I. Let p,.(x) have exactly k zeros
in I. Then every solution of the equation (17) has at most k + n zeros.

Consider now the case that the equation (2) being of the class C is oscillatory on I,
that is, there exists at least one its solution having infinitely many zeros in I. Then,
from Theorem 3 it follows that for n even every solution of the equation (2) has
infinitely many zeros, while in the case of n odd this is true for each solution having
at least one zero-point.

Suppose n is even and the function p,,(x) is given by the relation

(19) Pas1(x) = f(x) u(x)

where f(x) € Cq(I), f(x) + 0, x €I, and u(x) is a solution of (2) with (n — 1)-tuple
zeros. If we denote

(20) [dez+(n-—l)2]|::€z+(n )]. [:{2+1]v=g(§)s(é),

where g(&) = [x'(&)]" F[x(8)]; s(&) = #,(&) u[x(&)], & €I, then from the Theorem 9
we get (17) I ~ (20) I,{x(&), t,(&)}. Here x(£)is the inverse function to &(x), t,(¢) =
= 1/t[x(£)], whereby (14,) I, ~ (2) I{&(x), t(x)}. With regard to the meaning of the
functions x(£), #,(£) the function s(£) represénts a solution of (14,) having infinitely
many (n — 1)-tuple nro—pomts
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The oscillatory properties of the solutions of the equation (20) will be dealt with
on the basis of a Comparison Theorem which is a generalization of the classical
Sturm’s Theorem. For this purpose let us consider two equations of the 2a-th order

(21) 4% 4 au®D + g U &+ Gy + @2(X) U = P2044(X)

(22) oM + @@ 4 ap®® &+ oa,,_ " + VanlX) 0 = Y2041(%),

in which a,,...,a,,_, are some constants, @,(X), Pzn+1(%), ¥24(X), V2n+1(X) €
€ Co(I,), 1, is an interval, u® = d'ufdx’, v® = d'v[dx’, I = 1,..., 2n. Let u(x) be

a solution of the former equation and let v(x) be a solution of the latter one. By
simple combining these equations we get for x e I,

u(x) v2"(x) — u®(x) v(x) + a,[u(x) v?"~(x) — u®"2(x) o(x)] + ... +
+ z-a[u(x) v'(x) — w'(x) o(%)] + [V2ulx) — @2u(x)] ulx) o(x) =
= Ysn+ 1(x) u(x) = Pan+ 1(x) v(x) .

Integrating this equality on the interval (x,, x,) < I, we come to the relation
[, (~ 1 a0 o~ 0) — wor-9(s) O} +
+ aal 3 (=1 W) 20 70) = w3 0) WO + ek
 any a0 V) = () oL + [ o) = u9] () of) =
= [ 20010 ) = s o 85

Under the assumption that the solution u(x) of the equation (21) fulfils the conditions

(23) u(xy) = w'(x,) = ... =u® Px)) =0, u®(x,)+0
u(x;) = u'(x;) = ... = u®""Nx;) =0, u® " V(x,) 0

the last equality reduces to the form

(24)  —uV(x;) ofx) + uC*(x,) ofx,) + j “T2®) - 02(0)] u(®)

o5 = [ Tars s ) = Oares(e) o] .
From it we get the following Comparison Theorem:
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Theorem 11. Let the following conditions on the interval {(x,, x,) be satisfied:

2 ¢2,,(X) é ¢2n(x)‘

. Pans1(x) = 0.

. Let u(x) be a solution of (21) satisfying the conditions (23).

. Let sgn uan- D(x,) # sgn u®* " D(x,) and if @,,(x) F Y,.(x) on Cxyy X2), let
u(x) + 0, x €(x;, ).

5. Let Y3,44(x) = f(x) u(x), f(x) € Colxy, x5). ‘

Then, if f(x) = 0(=<0) on <{x,, x,) and if there exists a solution v(x) of (22) such
that v(x) # 0, x e(x;, x;), sgnv(x) + sgn u®"~1(x,) (sgn v(x) = sgn u?~V(x,)),
x €(xy, x,), then the equation (22) is identical with the equation (21) and v(x,) =
= »(x,) = 0.

Particularly, if f(x) =0 on {x, x,) and if there exists a non-vanishing on
(%4, x;) solution v(x) of the equation (22), then the equation (22) is identical with the
equation (21) and v(x,) = v(x,) = 0.

Proof. Consider the case f(x) 2 0 on {x,, x,). Then the right side of (24) being
equal to [32 f(x) [u(x)]? dx is not negative. If @,,(x) % ¥,,(x), then u(x) > 0(<0) on
(x4 x;). Simultaneously u®*~Y)(x,) > 0(<0) and u®"~"(x,) < 0(>0). Suppose
there exists a solution v(x) of (22) such that v(x) < 0(>0) on (x,, x,). This implies
that in (24) the first term is <0 and the second one <0. From the obtained contradic-
tion the equality @,,(x) = ¥,,(x) on {x;, x,) follows. Then in (24) the first term must
be equal to 0. This arises if and only if v(x,) = v(x,) = 0. Simultaneously it must
be 32 f(x) [u(x)]* dx = 0. This gives f(x) = 0 on {x,, x,), q.e.d.

The case f(x) < 0 can be treated similarly.

By similar consideration Theorem 11’ will be proved.

W N e

Theorem 11’. Let the assumptions 1—5 of Theorem 11 be satisfied. Then, if
f(x) > 0(<0) on (x,, x,), there does not exist the solution v(x) of the equation (22)
such that v(x) u®*~(x,) < 0(20), x € {x;, x3).

Corollary. Let the following conditions be satisfied on 1,:

L 92,(x) S ¥24(x).

2. Pan+ 1(") = 0.

3. Let u(x) be a solution of the equation (21) with (2n — 1)-tuple zeros x,,, m =
=12,..,0nl,.

4. Let for each m. sgnu®~"x,) + sgn u® " (x,.,) and if @,(x) % ¥2.(x),
% € (Xpy Xm+1)» then let u(x) % 0, X € (X Xpps1)-

5. Let Y3,41(x) = f(x) u(x), f(x) € Co(1,), f(x) + 0, x €I,. Then every solution v(x)
of the ¢quation (22) changes its sign in the interval (X,, X,+2) at least once,
m=12.
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