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ON AN ORDERING OF THE VERTICES OF A GRAPH

MILAN SEKANINA, Brno
(Received August 1, 1961)

This paper contains some results on the ordering of the set of vertices of
a connected graph.

1

1.1. Let G be a set. Then D(G) will denote the system of all two-point subsets of G,
D(G)={X;X ={x,y},x€G,yeG,x + y}.

For a two-element set {x, y} we shall also use the symbol (x, ).

1.2. By a graph we shall understand a nonempty set G (the elements of which we
shall call the vertices of the graph) together with a system ¢ = D(G). This graph is
then denoted by (G, g). A two-point set (a, b) € ¢ will be called the edge of the graph
(G, o) connecting a and b. If ¢ = D(G) we shall call the graph (G, ¢) complete. If
card G = X, we call (G, ¢) an enumerable graph. If card G is finite, then (G, @) is
called a finite graph.

1.3. Let (Gy, 0,), (G,, 0,) be two graphs, G, = G,, ¢; < @,. Then we call (G4, 04)
a subgraph of (G,, 0,). If 0; = 0, N D(G,), we call (Gy, ¢,) a saturated subgraph of
the graph (G,, ¢,) (in greater detail: a saturated subgraph on the set G,).

14. Let G = {ay, ..., ay4 ), n = 1 integer, be an ordered set (a; ;... £a,44)
with n + 1 elements. Let ¢ = {(a,a,), (a;a,), ---» (@p, Gn+1)}. Then the graph (G, o)
will be called a path connecting a, and a,, ;. The number = (in [2], p. 137*? should
be n — 1 instead of n) is the length of this path. The path may be denoted in a sim-
pler way by (ag,...,a,.+(). Let n =22 and ¢; = ¢V {(@,+1, a4)}. Then we call
(G, ¢,) a circle with length n + 1. We may also denote it by (ay, ..., @n+5, 4). Let
G = {a,, a,,...} be an enumerable set ordered in a sequence of type w. Let
0 = {(ay, ay), ..., (@ Gns1), -..}- Then we call the graph (G, @) an one-sided infi-
nite path, and denote it by (a4, a,, ...).
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Let (G, 0) be a graph, G; = {ay, ..., a,4,} = G a finite ordered subset. Let the path
(@ys .. an+1) be a subgraph in (G, o). Then we say that (ay, ..., @,4) is the path
connecting a, and a,4, in (G, ).

Similarly we can define circles in (G, g).

1.5. A graph (G, @) is called connected if each pair of vertices is connected by
a path.

Let (G4, 0,) be a saturated subgraph of a graph (G, o) such that 1) it is connected,
2)xeG — Gy = (G, U {x}, 0 n D(G, U {x})) is not a connected graph. Then (G, ¢}
is a connected component (or merely component) in (G, ). In every connected graph
a metric can be defined as follows: to every pair of different vertices @ and b assign the
number p(a, b), which is the least length of paths in (G, @) connecting a and b; for
a=bputpu(a,a)=0.f A< G,Bc G, A+ 0=+ B, then u(4, B) = min u(x, y)-

xeA,yeB

1.6. Let (G, o) be a graph, a € G. Let there exist just one b € G such that (a, b) € ¢.
Then a will be called an end-vertex in (G, g). Let (G, @) be a connected graph. Let be

(a, b)eg. Let (G, 0 — {(a, b)}) be a not connected graph. Then we call (a, b) a
bridge in (G, g).

1.7. Let (G, ) and (Gy, o,) be two graphs and let there exist a one-to-one mapping
f of G onto G, such that for a, b € G, (a, b) € ¢ is equivalent to (f(a), f(b)) € ¢;- Then
the graphs (G, ¢) and (G, ¢,) will be called isomorphic and f an isomorphism between
(G, @) and (G, 0,).

1t is obvious that for the isomorphism f the following assertions hold:

a) The image of a path of length 7 is a path of length n.

b) The image of a circle of length n is a circle of length .

c) If (G, o) is connected then (G, g,) is also connected.

d) If (G, ¢)is connected and the distance of a and b is n, then the distance in (G, 01)
of the vertices f(a) and f(b) is also n.

e) The image of a component is a component.

f) The image of an end-vertex is an end-vertex.

g) The image of a bridge is a bridge.

2

2.1. Let there be given a enumerable connected graph (G, o). Let us order the set G
in a sequence of type w, = = {a, ..., a,, ...} (so for a € G there exists just one index n
such that a = a,). Let us denote the set of all these sequences by n(G). For given =, let
p(n) = {p(a;, a,), p(as, as), ..., ...}. Let P(G, ¢) = {p(n); = € n(G)}. Further on we
shall deal with the structure of sequences = and the set P(G, o).

2.2. Let § be a set, S = D(G). We shall say that S has a finite basis if there exists
a finite set N = G such that (a, b)e S=(a, b) " N + 0.
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2.3. 1. Let (G, @) be a complete graph. Then card P(G, g) = 1.

2. Let there exist in D(G, g) two systems S and T such that neither S nor T have
finite basis and (a, b)€ S, (¢, d) € T=> pu(a, b) *+ u(c, d).

Then card P(G, ) = 2%.

3. If neither 1 nor 2 then card P(G, ¢) = N,.

Proof.

Ad 1. The assertion is obvious.

Ad 2. Let M be a set of all sequences {u,} consisting of zeros and ones (i.e.u, =1
or 0 for every positive integer n). As S and T do not have finite basis, they are infinite,
and we can order G in a sequence n = {ay, d,, ...} €n(G) such that (a,, ds,+1) €
€SUT, (A4n asns1)ES<u, =1, (a4n, A4ns1)€ T u, =0, where {u,}eM is
any given sequence. For two different sequences of M we obtain two different sequen-
ces of P(G, g) (these sequences differ in some member with index divisible by 4). As
card M = 2% and card P(G, g) £ 2%, we conclude card P(G, g) = 2*.

Ad 3. For every positive integer let 7(d) be the set of all those pairs of vertices of
(G, @), which have distance d (in the metric u). First we shall show that under our sup-
positions there exists at least one d such that 7(d) does not have finite basis. Let D =
< D(G, o) be a decomposition on G, i.e. (a, b), (¢, d)€ D, (a, b) * (¢, d)=(a, b) n
n(c,d) =0, U(a,b) = G. Put D(d) = D n 7(d). Assume that all sets D(d) are

D

finite. Then we choose from each of these sets (if possible) one element and the system
thus obtained (evidently infinite) may be divided into two infinite disjoint subsystems
Sand T. Then S and T'satisfy the assumption of point 2 of our lemma, which is in con-
tradiction with the assumption of point 3. So there exists a d, such that D(d,) is an
infinite set. It follows from the definition of D that D(d,) does not have finite basis, and,
because D(d,) = t(d,), ©(d,) also does not have finite basis. The set D(G, ¢) — (d,)
is nonempty (this is obvious for d, = 1, for d; = 1 this follows from the assumption
that (G, 0) is not a complete graph). As (a, b)e D(G) — t(d,) = w(a, b) * dy,
(a, b) € ©(d,) = p(a, b) = d,, therefore the set D(G) — 7(d;) must have an finite
basis N. Let {a,} €n(G). Then there exists an m, such that n > m; = a,non €N,
and thus p(a,, a,+,) = d,. Therefore every sequence from P(G, g) consists of d; with
a finite number of exceptions. Thus card P(G, ¢) < N,. Furthermore, for every m
there exists a sequence {a,} € n(G) such that u(a,, a,) = w(as, a) = ... = Wazm-1,
ayy) = dy # W(azms1, Aam+2), and thus card P(G, ¢) = N,.

2.4. In the following sections (2.4 —2.12) let (G, g) denote an enumerable connected
graph, {a,} e n(G). For every positive integer n let (cy, ..., ¢;) be a path connecting
a, and a,;, in (G, o) (thus a, = ¢;, a,+,; = c;), and having length p(a,, a,+,) (thus
M@y, ay+1) =j — 1). This path will be denoted by C,. Note that, generally, u(c;,, ¢;,)=
=i, —i,for1 £i, £i, £j If 1 <i < jthen we shall say that the vertex c; is
skipped over at the n-th step. For i, 1 £ i < n, define n(i) in the following manner:
if a; is skipped over at some m-th step for m=n, denote by n(i) the smallest such m.
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Otherwise put n(i) = n. Denote Max (n(i)) + 1 by H(n). Let M(n) denote the sum

0Zi<n
P'(am An+ 1) P e ﬂ(aH(n)—ls aH(n))'

2.5. Let n = 2 be a positive integer, d a nonnegative integer. We shall say that
the system of positive integers
Uy, Ugy eees Uy
satisfies all polygonal inequalities with defect d if, for 1 £ i £ n,
U Sup+ e Uy F U e+ u, +d

If d = 0, we shall say that the given system satisfies all polygonal inequalities.
2.6. Let d be a nonnegative integer. Let Uy 1, ..y Uy ns Uz 15 oo U2,y Um,15 =00

Uy, be m systems of positive integers each of which satisfies all polygonal in-
equalities with defect d and let d < m. Then the system

By gh wwis TG ey 555 i, 131 495 Bl
satisfies all polygonal inequalities. In particular, if the systems of positive integers
Ugy ouey Uy} Vg, ..., Uy Satisfy all polygonal inequalities, then the system uy, ..., Uy,
Uy, ---» Uy, Satisfies all polygonal inequalities.

The proof is evident.

2.7. Let n, (G, @), C,, H(n) be the notions from 2.4, n fixed. Let s 2 H(n). For
a;, a, (i, k £ s), respectively, let i = n and k = n or aa;) be skipped over at the
i'-th (k'-th) step, where i’ = n (k' = n) and k = n (i Z n) or a; be skipped over at
the i’-th step and a, at the k'-th step and k' = n, i’ = n. Then

(1) #(ab ak) é I"'(am an+1) + ...+ #(as— 1> as) :

Proof.

a) If i = n, k2 n, (1) is obvious.

b) Let be i < n, k 2 n. For example let n(i) < k.
Then p(a;, ay) £ W@ngiys Anciy+1) + -« + w(az—y, a;), from which (1) follows imme-
diately. The proof for n(i) = k is analogous. So is the case for k < n, i 2 n.

) Let i,k < n and e.g. n(i) < n(k). Then p(a; ax) < W@neiy Gniiy+1) + -+ +
+ 1(@nxy» Gnay+ 1), from which (1) follows immediately.

An analogous reasoning applies to n(i) = n(k).

2.8. Let s 2 H(n), g a positive integer, n < g < s. For all i, n £ i <'s, with the
eventual exception of i = g, let

p(ai! ai+1) é .u(am an+1) + ... + p(ai—l’ ai) + I‘L(ai—l: ai—Z) + ... +
+ Au(as—l’ as) +2.

Then there exists an e > s such that for all i, n < i < e, with the eventual excep-
tion of i = g, there holds

(2) I‘(ab a!-l-l) =< F‘(am Quey) + ... + ﬂ(ai—p ai) + Il(ai+1, ai+2) + ...+
+ u(ae—la ae) + 2 .
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Proof. Let C; = (cy, ..., ¢;). Let us distinguish two cases:

a) If {¢;, ..., ¢;_1} < {ay, ..., a;} then, according to 2.7, u(c,, ¢j—1) < an ps1)+
+ ...+ ﬂ(as—h as)ﬂ Au(as’ as+1) é 2 + ,u(a,,, an+1) +...+ ﬂ(as—l! as)' It sufﬁces
thentopute = s + 1.

b) Let {c,,...,¢j—y} non < {ay, ..., a,}. Let c,, be the first element in C, such
that ¢, non € {ay, ..., a;4,}. Let ¢, = a,. Thus ¢ > s + 1. According to 2.7 (¢,,—; +
* agry) Wag, Cpeq) < 1@y apiq) + ... + p(ag_y, a;). From the fact that pis a metric
it follows that

ﬂ(cma as+1) s ﬂ(as+13 as+2) + ...+ u(a,_l, at) y
Therefore
ﬂ(a.;i as+1) é Au(am an+1) + ...+ #(as-lﬁ as) + /'l(as+19 as+2) + ...+
+ ”’(at—l’ at) + L.
Hence (2) follows immediately for i = sand e = 1.
For integral i,s + 1 £ i < t, there holds i
wag, aiyy) < H(@is1s Aivg) + oo + @iy, a;) + pag, age) + ... +
+ wai-1, @) £ ais1, 8142) + oo+ Waro15 @) + Wap agyq) + oo+
+ pwa;_y, a).
(2) follows with # instead of e. It suffices to put e = t.

2.9. Let all the suppositions of 2.8. be satisfied. Then there exists an L such that the
system of numbers

/‘l(am a,,+1), vy #(aL—l’ aL)

satisfies all polygonal inequalities with defect 2.

Proof. It suffices to apply 2.8 m times, where m = p(a,, a,+1)-

2.10. Let r, p be positive integers, r = p, with the following properties

1) p— n — 1 2 M(n) (for the definition of M(n) see 2.4).

2) Cic {ays sy} for n<i < p.
Then forn £i < p,
B) e ai+1) S WMan Aniy) + oo+ p@iog,a) + W@5415 142) + oo F

+ ﬂ(ar—l’ ar) +2.
Proof. a) Let n £ i < H(n). Then
Has, a;y1) < M(n) < @@y Gpay) + oon + p@i-15 @) + p(@1415 a542) -
+ ﬂ(ap—l’ ap) s

according to assumption 1. From this follows (3).

b) Let H(n) < i < p. Let C; = (cy, ..., ¢;). Define the function ¢(u) for u =
=1,...,j thus:

Cy = ayp, Ny Z N=> ¢(u) =Ny, € =0, N, <n= (P(u) = n(nu)'
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Then n £ @(u) < r for all u = 1,2,...,j. For k,n £ k < H(n), the number of
those u for which ¢(u) = k at most equals pu(ay, dg+). (Thus card ¢~ (k) <
< u(ay, axy,).) Indeed, if o(u) = k, then either a,, = a; or a,, is skipped over at the
k-th step. But at the k-th step there are skipped over u(ay, az+1) — 1 vertices. The
same estime holds for k > H(n) because then card ¢ ~*(k) < 1 < u(ay, ay+,). Further-

more card ¢~ '(i) = 1, because only ¢(1) =i, which follows immediately from
i = H(n). Therefore

way, aiyq) =j — 1 = card ¢~ (n) + card ¢~ }(n+1) + card 7 '(i—1) +
+ card 9 1(i) + ... + card @ }(r—1) £ p(ay, apsy) + --- + Wa;-y, a;) +
+ 1+ 85415 @i42) + oo + par-y, a)
This implies (3).
2.11. There exists a number s, s > n, such that the system of numbers p(a,, a,+1),
-oos Wag— 1, a;) satisfies all polygonal inequalities with defect 2.

‘Proof. Let p be the number from 2.10. Let now r be a number such that r = p and
that:

i < p, a is skipped over at the i-th step=>k < r.
Two cases can occur:

1. If a, is skipped over at the i-th step, i < r, then also k < r.

Then the assumptions from 2.10 are satisfied with r instead of p. Thenforn £ i <r
we have p(a;, a;+1) < W(ap Gpyq) + oo + @@;-1, @) + W(@i41, Givz) + oo+ War-1,
a,) + 2 and it suffices to put s = r. ‘

2. Let there exist an g, such that k > r and g, is skipped over at the i-th step,
i < r. Let us denote by g the first index i for which there exist such a;. Evidently
g 2 p.Let C, = (cy, ..., ¢;). Let n < i < g. Then according to 2.10 (put g for p)

M@z @ie1) S @y apsy) + oo + paioy, @) + Wai41, Graz) + oo F
+ wa,—y,a,) + 2,

”

and thus

ﬂ(‘_li,atn) S Wan @piy) + oo+ pai-y, @) + W(@isy, Givo) + -
+ a1, az) + 2.

Let g + 1 £ i < k. Then (as p is a metric)
#(abain) < waisy, Bisg) + oen + w(ax—1, ax) + u(ay, g+ )+t
+ u(ai—19 ai) é I‘l(am an+1) + oes F ﬂ(ai_l, ai) + #(ai+1, ai+2) + e

+ l‘l(ak—-l, ak) v
Thus the relation

#a; ai4y) £ pan Gpiey) + ...+ pmai-y, a) + W@y, i) + . +
+ w(ag-y, a;) + 2
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holds for all i, n £ i < k, with the eventual exception of i = g. Alsok =2r=p =
2 M(n) + n + 1 > H(n). Then it suffices to choose the L described in 2.9 and put
s = L.

2.12. There exist infinite infinetely many k, k > n, such that the system of

numbers p(a,, ayyq), ..., W(ay-1, a;) satisfies all polygonal inequalities.
The proof follows imediately from 2.6 and 2.11.

3

3.1. Let (G, o) be a finite graph. Let anone G, G, = GU {a}, beG, g, = QU
v {(a, b)}. The graph (G, g,) is called an a-prolongation of the graph (G, @).

Let n > 1.be a number greater then the length of an arbitrary circle in (G, g). Let
beay,...,a,noneG, G, =Gu{ay,...,a,}, b,ceG, b *c ub,c)<n, o =0ouU
U {(b, ay), (ay, a3), ..., (a,, ¢)}. Then we call (G,, ¢;) a p-prolongation of (G, ¢) with
norm n.

Let n > 2 be a number such that is greater than the length of an arbitrary circle in
(G, 0), ay; ...,a,non € G, be G, Gy = GU {a, ..., a,}, 01 = ¢V {(b, ay), ...,
(a,, a;)}. Then (G, o,) will be called a y-prolongation of (G, ¢) with norm n.

Sometimes we shall also use the notation “(G, ¢) = (Gy, ¢,) is a £-prolongation”
with & = «, S, y.

3.2. Let (G, o) be a connected subgraph in a connected finite graph (G, ¢;). For all
points a, b € G, let the distance a from b in (G, ¢) be the same as the distance of a from
bin (G,, ¢,)- Then we shall say that (G, @) is metrically embedded in (G, 0,).

3.3. It is easy to see that the following statements hold:

1. If (G, o) is a connected finite graph and (G;, ¢,) its &-prolongation (¢ = «, B, y),
then (Gy, ¢,) is also connected.

2. Let (G4, 0,) be a E-prolongation (¢ = «, B, y) of a connected (G, g). Then (G, @)
is metrically embedded in (G, ¢;)-

3. Let (G4, 0,) be a B- or y-prolongation of the graph (G, ¢) with norm n. Let
(L, %) be a subgraph in (G, ¢,), which is a circle and L non = G. Then the length of
the circle (L, 1) is at least n.

4. Let (G, ) be a finite connected graph and (G, ,) its y-prolongation with norm
n. With the notation of 3.1, (b, a,) is a bridge in (Gy, ¢,), a, lies on the circle (a4, ...,
ays al)'

3.4. Let (G, ¢,) be a graph with only one vertex. Define by induction the sequence
of graphs {(G,, 0,)} thus: (G,41, 0,+1) originates from (G,, ¢,) by {-prolongation
(¢ = @, B,7) and it holds:

If (Gy, 04) = (Gps1, Qn+q) is an a- or y-prolongation and i > n + 1, then x€ G,
y€(G; — G;_;)= (x, y) non € g;. Let us call such a sequence an w-sequence. If we
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put G = U G, and ¢ = U g, we shall say that (G, g) is the w-limit of the sequence
=1 n=1

{(Gm Qn)}'

3.5. The following simple statements hold:

1. For every n, (G,, 0,) is a connected finite graph. (G, ¢) is a connected enumer-
able graph.

2. If (G, 0,) = (Gys1s 0ns1) is an oa-prolongation, then (G,i1, @n+1) = (Gut2s
0,+2) is an a- or y-prolongation (it follows immediately from the condition for w-
sequence).

3. If (G,, 0,) = (G, + 1> @ns+1) is an a-prolongation, and if G,+; — G, = {b} then b
does not lie on any circle in (G, ). If (a, b) = g,+, then (a, b) is a bridge in (G, @)-
(This follows from 2.)

4. Let G, = {a}. Then a is the only end-vertex in(G, g) (this follows from 3).

5. For all n, (G,, g,) is metrically embedded in (G, ¢) (this follows from 3.3.2).

6. Let (L, 4) be a circle with length e which is a subgraph in (G, g). Let m be the first
index such that (L, 2) is a subgraph of (G,, 0,,)- Then (G- 1, 0m—1) = (Gms @) is 2 p- OF
y-prolongation with norm at most e. (This follows from the definition of prolongation
and the property of norms.)

7. Let (a, b) be a bridge in (G, o). Then there exists an n such that (G,, g,) ~
— (G, 41> 0n+1) is an o= or y-prolongation; if it is an a-prolongation then a € G, and
beG,,; — G, (possibly after exchanging a and b); if it is a y-prolongation it is
necessary to exchange a and b in the definition of y-prolongation. Further more, if
c€G,, de G — G, and (c, d) # (a, b), then (¢, d)non € .

3.6. Let {(G,, 0,)}, {(G., 0))} be two w-sequences, (G, ¢), (G', @) their w-limits.
Let f be an isomorphic mapping of the graph (G, o) onto (G', ¢"), f, the partial map-
ping of f on the set G,. Then

L. the prOIOngations (Gm Qn) - (Gn+ 15> @n+ 1) and (G,:, Q'll) o4 (Grlt+ 1> Qr,l-l- 1) are Of the
same kind and, for B- and y-prolongation, have the same norms.

2. f, is an isomorphic mapping of (G,, g,) onto (G, ¢;)-

Proof. Let G, = {a}, G{ = {a’}. According to 3.5, 4, a and a’ are the only end-
vertices in (G, @) resp. (G', ¢"). Thus a’ = f(a).

Let n be a positive integer. Suppose that f, is an isomorphic mapping (G,, ¢,) on
(G, en)-

a) Let (G, @,) = (Gy+15 @n+1) be an a-prolongation. Let G,,, — G, = {b}, then
(a, b) is a bridge in (G, @) (3.5.3). So (f(a), (b)) is a bridge in (G, ¢') (1.7g). As
f(a) e G,,f(b) ¢ G,and (f(a), (b)) € ¢, according to 3.5 7 there must be (G,, o) —
= (Gp+15 @44+1) an a- or y-prolongation and f(b) € G., ,, for a-prolongations f(b) €
€ Gu4y — G, for y-prolongations f(b) = a, (a, from the definition on y-prolonga-
tion). According to 3.5 3 b does not lie on any circle in (G, g). So f(b) does not lie on
any circle in (G, ¢'). But if (G,, ¢;) - (G,+,, 0,+,) were a y-prolongation, then a;
would lie on a circle (3.3.4), a contradiction. So (G}, @) = (G4 1> 0+1) iS an a-pro-
longation and f, is an isomorphism between (G, +1, 0,+1) and (G,.1, 0h+1)-
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b) Let (G,, ¢,) = (G,+1, 0+1) be a y-prolongation. Analogously as in a) we get that
(Gns ) = (Grs15 0+ 1) is a y-prolongation.

Let m and m’ be the corresponding norms. Let a € G,,; — G,. Then a lies on a
circle of length m. So f(a) lies in (G', ¢") on a circle with length m. According to the
definition of norm and 3.3 3, all the circles with any vertex in G — G, are of
length greater than m. This means that f(a) lies on a circle of the smallest length with
vertices in G'— G,. But (again according to 3.3 3) this is the circle with the set of ver-
tices G, ; — G,. Hence it follows that f(G,,) = G,.,, m = m’, and the fact that f,
is an isomorphic mapping of (G,+1, 0s+1) 00t0 (G4 15 0p+1)-

¢) If (G, 0,) = (Gps 1, Qn+1) is @ B-prolongation, then it follows from a) and b) that
(G, 04) = (Gp 415 0, +1) is also a B-prolongation. As in b) we find that the norms are the
same in both cases, f(G,+;) = G, and f, is an isomorphic mapping of (G,+1, @+1)
onto (Gp+1, Qn+1)-

4

41. Let d,, d,,...,d,, ... be an infinite sequence of positive integers such that for
every index n there exists an m with m > n and such that the system d,, d, 41, - .-, dm
satisfies all polygonal inequalities.

From 2.6 it follows that then there are infinitely many such numbers. Let d, + 1.
We can show that then there are also infinitely many m such that the system of num-
bers d, — 1,...,d,, satisfies all polygonal inequalities. It suffices to take systems
Ay o5 App; Gy, ..., d, satisfying all polygonal inequalities. Then the system

dn - 1’ evey dm, dm+1a-'-: dp

satisfies all polygonal inequalities.

4.2. Let G be an enumerable set. Let us order it in a sequence {b;, b,,...}. Put
a; = by, G; = {a;}, 0, = 0.

We shall now define the w-sequence {(G,, ¢,)} by induction in the following way:

Let n be a positive integer and suppose that there are defined graphs (G4, ¢1); ---»
(G,, 0,) and that for a certain m there have been selected in G, m elements ay, ..., a,
such that in (G,, 0,)

F(al’ a2) =dy; .. ”‘(am—l’ am) =dp-y
and
{bys s by} & {Gy5 o0y G}

a) Let {a,,...,a,} = G,.

a,) Let d,,= 1. Let p be the smallest index such that b,non € G,. Obviously
p2n+ L.Thenput G,y = G, U {b,}, 01 = @Y {(am bp)}. Thus (G4 1, Cns1)is
an a-prolongation of the graph (G, ¢). Put a,,..; = b,. The suppositions of induction
now hold for n + 1 (for m we put m + 1).
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a,) Let d,, + 1. Choose r such that
1. the system d,, — 1, ..., d, fulfills all polygonal inequalities.

2.s=d,—1+d, + ...+ d,is greater than the length of the greatest circle in
(Gu 04), 5 > 2.

Let p again be the smallest index such that b, non € G,. Now choose in G — G,
s points (b, among them) ¢y, ..., ¢, and put G,y = G, U {C1, -+ C}, Qpe1 = Cn Y
U {(@y 1), (€15 €2)s +-us (Cs» €1)}. Then (G, 44, 0,41) is a y-prolongation (G,, ¢,) with
norm S. Put @iy = €1 Guiz = Ciptdpeps +++s Or = Cs—d 41> Gpe1 = €;. In cOD-
sequence of 1in (G, 4y, 0,+1), it holds that

I'l'(am’ am+1) = dm’ "‘(am-!-l’ am+2) = dm+1a LERTY #(ara ar+1) = dr‘

b) Let {ay,...,a,} * G, Let t be the first index such that b,eG,, b,none
€{ay, ..., a,}, p again the first index such that b,non € G,. Choose r so that the
system d,, ..., d, satisfies all polygonal inequalities,

4) s=d,+...+d,> ua,b,)+1

and that s — 1 is greater than the length of the greatest circle in (G,, ¢,). Choose s — 1
points ¢y, ..., s,_, from G — G, (b, among them) and define

Gn+1 = Gn v {61, LEXTY cs—1}3 Qn+1 = Qn v {(am, Ci), (Cl’ cl)’ 2oy (cs—l’ bl)} £

Then (G,+1, 0u+1) is 2 B-prolongation of the graph (G,, g,). Put a,. = ¢4,
Apiz = Cap4dpers - Apey = b, According to (4),

#(ams am+1) = dm’ /‘(am+1’ am+2) = dm+1’ si8io9 ﬂ(ar’ ar+1) = dr *

Thus the assumptions are again satisfied (m in place of r + 1).

From the construction mentioned above (in both cases a) and b)) it is evident that if,
for an n, case a occurs then (G, ,) = (Gns1, 0n+1) iS an o- or y-prolongation;
and if i > n + 1, then for a€ G, and be G, — G;,_; we have (a, b)non € g;.
Thus {(G,, ¢,)} forms an w-sequence, {JG, = G. Put ¢ = Ug,. The sequence {a,}

defined in the construction belongs to n(G) and p({a,}) = {d;, d;, ds, ...}. In con-
sequence of this result and lemma 2.12,

4.3. To the sequence of positive integers {dy, d,, ...} there exists an enumerable
connected graph (G, o) and n € i(G) such that p(r) = {d,, d,, ...} if and only if for
every n there is an m > n such that the system

dn, ] dm

satisfies all polygonal inequalities.

4.4. We shall now prove that to the given sequence from 4.1 there belong 2% of the
graphs (mutually non-isomorphic) which are spoken about in 4.3.

a) First suppose that the considered sequence {d,, d,, ...} has the property that
there exists an N so that for n > N there is d, = 1. Then apparently in the construc-
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tion 4.2 for a certain N, it holds that n > N, = {(G,, ¢,) = (G,+1, Cn+1) Is an o-
prolongation}. A saturated subgraph on the set G — Gy, in (G, ¢) is then a onesided
infinite path (a;, a;4, ...) (for a suitable j). Let us choose the sequence

(5) Figs Mgy sons Pisicios

of integers not less than 2 and construct a graph (G, ¢*), where ¢* = ¢ U {(a;, aj4n,) -
(@j4n> Qjrny+ny)s ---3- To two different sequences (5) there belong two non-iso-
morphic graphs (G, ¢*). The cardinality of the set of sequences (5) is 2%, so that there
are 2% such graphs (G, ¢*). Simultaneously {a,} € 7(G) and {d,} = p({a.}) € P(G, ¢*)
for arbitrary (5).

b) Assume that the index N described in a) does not exist. Then in the construction
4.2, for infinitely many n, (G,, ¢,) = (Gp+1, 0n+1) is @ p- or y-prolongation. As for
every such prolongation we have N, possibilities of choice of the norm of prolonga-
tion, there follows from 3.6 that it is possible, by the construction 4.2, to construct 2%°
of the mutually non-isomorphic graphs mentioned in 4.3.

4.5. (Corollary.) To every sequence p of positive integers smaller than a given
number k there exists an enumerable connected graph (G, ¢) such that there is an
ordering n € n(G) for which p(n) = p.

Proof. This follows immediately from 4.3, since obviously p satisfies the assump-
tions on the sequence {dy, d,, ...}

4.6. In the next theorem the graphs mentioned in 4.5 for k = 4 will be character-
ised.

Let k be a positive integer, k = 4. A necessary and sufficient condition for the set
of vertices of a connected enumerable graph (G, o) to be ordered in a sequence

(6) ai, az, ey a”,...
such that there holds for every n
(7) .u'(am ap+ 1) é k

is the validity of the implication
®) AU BU C = G, with C finite and A, B infinite= u(A4, B) < k.

Proof. Necessity. Suppose that G is ordered in a sequence (6) for which (7) holds.
Let A, B be infinite subsets from G, C finite and 4 U B u C = G. There exists an
index m such that for n > m, a,€ A U B. As A, B are infinite sets, then there exists an
index p > m such that a,€ 4, a,44 € B. As p(a,, a,+,) < k then also u(4, B) < k.

Sufficiency. Order G in a sequence by, b, ..., by, .... Let (K, 0 n D(K)) be a finite
connected saturated subgraph in (G, ¢) containing b; and b, among its vertices. Let
(G — K, D(G — K) n g) decompose into components L;, L, ..., L, .... To each of
these components assign a vertex c, € K such that p(c,, L,) = 1. A component L, will
be called a component of the first kind if it is infinite or finite and there exist infinitely
many other finite components L; such that ¢, = ¢;. Components not of the first kind
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will be called components of the second kind. There are only finitely many componejnts
of the second kind (K is a finite set); let these be L , ..., L;,. Let (Gy,01) = (KuL;v
U ...u Ly,0 n D(K U L, U...u L)). The components in (G — Gy, 0 D(G—Gy))
(with respect to the graph (G, o,) where the vertices ¢; have the same significance as
for (G, ¢)) are components of the first kind only.') We shall choose one of them and
denote it by L;, . Order the vertices of the graph (G4, 04) in a sequence

@iy wvos By 5
where a,,, = c;, in such a manner that (7) holds. Such a sequence exists according to
Lemma 3 in [2].2) Let n = 1 and suppose that there is defined a connected saturated
finite subgraph in (G, @) (G,, ¢,) with the following properties:

1. To each component L; from (G — G,, ¢ n D(G — G,)) there is assigned a vertex
¢; € G, in such a way that all the components are components of the first kind.

2. The set G, is ordered in a sequence aj, ..., a,, such that (7) holds and u(a,, ¢; ) <1
for a certain component L; .

3. by, baye., b €G,.

Let v be the smallest index with b, non € G,. Then v 2 n + 1. Let b, lie in a com-
ponent L, to which a vertex c is assigned in G,.

a) Let ¢ = c;, and Lbe finite. Then order Lin a sequence @y 1, ---, dp Such that
Mam+1s¢j,) < 2 and p(a,, ¢;) = 1 and that (7) holds.
We put then
Gus1 = G,UL, 041 =00 D(Gps1)-

The set G, is ordered in a sequence ay, ..., a,, ..., @,. The set of components in
(G = Goy1,0n D(G — G,,,)) differs from the set of components in (G — G,
o n D(G — G,) only by L. As Lis finite, c is assigned to infinitely many components
in (G — G,, @ 0 D(G — G,)) so that the induction suppositions 1, 2, 3 are satisfied
(with p instead of m; the assignement of vertices to components remains the same).

b) Let ¢ = c;, and Lbe infinite. There exists an a’ € Lsuch that p(a’, ¢) = 1 and an
a e L for which asa’ and p(a, c) = 1 or 2. Furthermore, there exists in L a subgraph
(S, o) of the first kind, which contains a, a’ and b,. Let us order its vertices in a se-
qUENCe G, 1, - .-, @, such that (7) holds, a,,, = a or a’ and a,, is assigned to some
component from (L— S, g n D(L— S)). We put G,y = G,US, Qs1 =00
N D(G,4,) and G, is to be ordered in a sequence
9) By oons g Bpsiigs woss Tys

1) A connected finite subgraph will be termed of the first kind if all of its components are of the
first kind after suitable choice of vertices ¢;. It may be observed in the just described construction
that in a connected graph there exists a subgraph of the first kind containing a prescribed finite set
of vertices.

2) This lemma reads as follows: Let (G, g) be a finite connected graph, a, b € G, @ = b. Then

a set G may be ordered in a sequence ay, ..., a, (n = card G), where ay=a,a,=b, p(a; a;41) =
=3fori=1,...,n—1.
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for which (7) holds (#(a,, @,+1) < 3). The suppositions of induction are satisfied
(the component L is replaced by components from (L — S, ¢ n D(L— S)). If an
element c is assigned to some other component L = L, then let this assignement be
preserved.

c) Let ¢ # c;,. Let us order the vertices from (G,, ¢,) to which there is assigned at
least one component from (G — G,, ¢ n D(G — G,)) in a sequence c', ..., ¢ such
that ¢; = c', ¢ = ¢". Let the point c* be assigned to components I, ..., L’;, .... Let

K" = L. Define a graph on the set of all K* in following way: K* and K*" (h + k')

p
will be connected by an edge precisely if in K*" there exist infinitely many vertices,
which have a distance <k from K* and simultaneously in K* there exist infinitely
many vertices which have a distance <k from K". We shall show that the graph thus
defined is connected. Assume the contrary. Then we can decompose the system of all
K* into two disjoint subsystems K™, ..., K* and K"**, ..., K" such that no two K*
from various systems are connected by an edge in defined graph. Put 4, = K" u
U...U K", B,=K"* U ...u K™ Both 4, and B, are infinite sets, G, is finite and
A; U By U G, = G. By the assumptions of our theorem, u(4,, B,) < k. Consequently
there exist a’ € A, and b’ € B; such that pu(a’, b") < k. Let A, = 4, — {a'}, B, =
= B; — {b'}. The assumptions of our theorem are again satisfied for the sets 4,, B,,
G, v {a’, b'}. Thus pu(4,, B,) < k and there exist vertices a” € B,, b” € B, such that
u(a”, b") £ k. Analogously, one may define by induction vertices a®, b™ such that
(@™, b™) < k. The points a™ are distinct and belong to some of the sets K™, ...,
K", and then the points b™ are distinct and belong to some of the sets K**, ..., K*.
Therefore there exist infinite sequences a™, ..., a™, ..., and b™, ..., b .. such
that all points from the first sequence belong to the same set K* and all points from the
second sequence belong to the same set K*'. Then K" and K* are connected by an
edge, which is the contradiction. Thus the graph on the set of K* is connected.
We shall now return to the definition of the graph (G, 1, 0,+1)- Let K*, ..., K* be

a path connecting K! and K" (thus K" = K*, K* = K").

" Assume y(a, ¢;) = 1 for a e K. Let a belong to the component L. Let a’ e K,
a' * a, with p(a’, K®) < k. Let a’ belong to the component L.

a) Let L= L.

a,) If Lis finite, we can order its vertices in a sequence
(10) g5 ks g
such that (7) holds and
(11) @, =a and o, =ad’ .

a,) Let Lbe infinite. Construct in it a subgraph of the first kind which contains a’
and a and order its vertices in a sequence (10) for which (11) holds.
b) Let L+ L.
by,) If Lis finite, we may order it in a sequence (10) for which a;; = a and u(e,, a) <
1.

IIA
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b,,) Let Lbe infinite. Then construct in La subgraph of the first kind which con-
tains a and order its vertices in a sequence (10), for which there hold the relations
mentioned in by,).

b,;) Let L be finite. Then order it in a sequence

(12) Oy 15 oo vy Ol
such that
(13) [J,((Xs+1, cj,,) =1 or 2 s Oy = a, J

b,,) Let L be infinite. Then construct in L a subgraph of the first kind which con-
tains a’ and a point ., ;, for which p(c4 1, ¢;,) = 1 0r2,a" # ay4y. Order the vertices

of this graph in a sequence (12).
In all cases in b)
Ogs o eop Oy Olypgs o ooy Ol
satisfies (7) (u(ot, o4 1) < 4).
c) Letbe 1 < i < tand let there already be defined a sequence
(14) gy eey Oy

such that p(a,, K*) < k. Assume a € K*, u(a, o,) < k. Then we may proceed as in a) or
b) with the exception that instead of a vertex ¢;, we consider the point ¢’ which is
assigned to the component from K’ and a has the meaning just defined.®)

d) Next let i = t and assume we have a sequence (14). Let a again be a vertex in
K" (= K*)with p(a, «,) £ k. Let the vertex a belong to a component L(L< K").

d,) Let b,e L. .

dy;) If L is finite, there exists in K" a further finite component L. Order L in
a sequence
(15) Oyt gs voes Oy

such that (7) holds, «,,,; = a and p(,, c) < 2 (the point c is assigned to components
from K"). Order the component L in a sequence
(16) Gyt 15 = eep Oz
for which (7) holds and p(a,, 4y, ¢) < 2, p(o,, ¢) = 1.
d;,) Let L be infinite. Construct in it a subgraph (S, o) of the first kind which con-

tains a and b,, and order its vertices in a sequence (15) in which «,, has distance at

most 1 from a certain point ¢’ of this subgraph, belonging to a certain component from
(L_ S,en D(L_ S)) (thus I-‘(C" aw) s 1)

d,) Let b,e L' % L.
d,,) If Lis finite, order it in a sequence (15) such that again «,,, = a and p(a,,c) =
<2

%) We can choose a point analogous to a’ such that @’ + a because we have N, possibilities for
the choice of this vertex (according to the definition of a graph on the system of sets K ").
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d,yy) Let L be infinite. Then construct in it a subgraph (S, ¢) of the first kind which
contains b, and let ¢’ be its vertex assigned to some component from (L'— S, ¢ N
n D(L'— S)). Order S in a sequence

(17) Oypt1s oeer Xz

where p(a,,+1, ¢) < 2, (e, ¢’) £ 1 and for which (7) holds.

d,,) Let L be finite. Order it in a sequence (16) with the required properties.

d,,) Let L be infinite. Then construct in L a subgraph of the first kind and order its
vertices in a sequence (15) with the required properties.

We order the component L as in the case d,;.

In all the cases d) we obtain a sequence

(18) Agyenes Ay Ogy eeny Opy Opegy oney Oy
or
(19) Qs vens Ay Ops ey Olgy Olpiqs oony Bygy Opyigs oves Oy o

As in all cases (%, 0, +1) < k and p(a,, «,,+1) < 4, the sequences (18) or (19) sa-
tisfy (7). If we denote the set of all members in the sequence (18) or (19) by G, 1, then
(Gut15 ¢ n D(G,4,)) is a graph of the first kind. Also, if some c¢” in a graph (G,, ¢,)
belongs to infinite by many components, again there exist in (G — G,41,0 N (G —
— G,4,)) infinitely many components with distance 1 from ¢”. In (18) or (19) the ele-
ments are from at most two components assigned to ¢” in (G — G,, ¢ © D(G — G,)).
The infinite components L from (G — G,, ¢ n D(G — G,)) whose elements appear in
(18) resp. (19), are now replaced by the components of the graph of the first kind
obtained in the construction of the sequences (18) and (19). If to such a component
L there belongs a vertex ¢” which also belongs in (G, ¢,) to a component L whose ele-
ments do not occur in our sequence, then again we assign ¢” to the component L in the
graph (G, 41, 0y+1) (@n+1 = ¢ N D(G,4)). The assignement of vertices from G, to
the new components let be taken over from the single subgraphs of the first kind
obtained in the construction of the sequences (18) and (19). Then the induction as-
sumption concerning the last element of a sequence (i.e. a,, or a,) is also satisfied, when
for c;, one takes ¢ or ¢’ (obtained in d,,), d,41) and similarly for d,,)).

4.7. Theorem 4.6 does not hold for k = 1,2, 3. An example for k = 1 may be
found on fig. 1, where K represents a complete enumerable graph, an example for
k = 3 on fig. 2.

Suppose for instance that it is possible to order the points of the graph on a figure 2
in a sequence oy, &, ..., 0, ... such that p(e;, 0;44) < 3. Let b = a;, ¢ = a;,. Let
N > iy, i,. Let ny, n,, ... be the sequence of all those n > N for which «, = a;,
®,+1 = dy (for certain i, k). Let n; be an arbitrary member of this sequence and
®,,+1 = dy for a certain k. Let f; = «;. We shall show that

(20) i<n;+1 or i=n;+2.
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Assume that (20) does not hold. Then evidently o;_; = ¢, and then necessarily
;.1 = ¢, which is a contradiction with i, < i + 1 and ¢ = d,.

Further we shall show that if a, = f; for n > nj, nj,q > n, then d; = a, with
n' < n;.q. If n’ < nthere is nothing to prove, if n’ > nthena,_; = ¢; and o, 44 =
=dj,andthus n' =n +1<nj,;.

Therefore there exists a j' such that n > nj, f; = a,, d; = o, =n’ < n. Let
j>Jj and @, =d;. According to the assertion proved above, @, 3 = fips
%43 = ¢;. Thus a, ., = d;, for some i, and again o, 45 = fip, %46 = €ir: By
induction it follows that «, with n > n; is always one of the elements of the form
d;, ¢;, f;; but this is impossible since the are infinitely many a;.

It is easy to prove that our graph satisfies the suppositions of theorem 4.6 for
k= 3.

4.8. A sequence p = {d;, d,,...} will be called an A-sequence when one of fol-
lowing cases occurs

1. d; =1 for all i.

2. There is an index i, such that d; = 2,and d; = 1 for i =+ i,.

3. There is an index i, such that d; = d; 4, =2, and d; = 1 for i i3, i ¥
iy + 1.

We shall say that an enumerable connected graph (G, o) is of type A4 if there exist
B < G and b € G such that:

1. card B = 2, card (G — B) = 2.

2. bnoneB.

3. 0 = D(G) — {(b,b") : b" € B} or B = {by, b,}, 0 = D(G) — D({b, by, bs}) -

0o
‘L ,’///—‘\\\
\
,// //}\? < \\
o Y = o S
o -0 O —0 ’ {(\ \ I,
VN /
\ \ K /
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? Nz aneb
é

Obr. 1.
Then

a) Letn = {ay, ..., %, ...} €n(G). Then p(x) is an 4-sequence.
b) Let p be an A-sequence. Then there exists a z € 7(G) such that p(n) = p.
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