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On regular and combinatorial imbedding.
By
Eduard Cech (Praha) and Josef Novik (Brno).
(Received February 11th, 1947.)

In his paper Lattices and topological spaces (Annals of Math.
39 (1938), 112—127) H. Wallman constructed, for an arbitrary
topological space*) @, a definite bicompact space «@ containing
@Q as a dense subset. In § 3 of the present paper, we prove that
@ may be characterised by the property that @ is both regularly
and combinatorially imbedded in it. Regular imbedding is defined
and analyzed in § 1, combinatorial imbedding, in-§ 2. In § 4, we
consider the question whether two points may be separated by
open subsets of w@.

1. Definition. A subspace @ of a space P is said to be re-
gulary imbedded in P if the family (¥) of the closures in P of all
sets F' closed in @ constitutes a closed basis of P, i. e. if every set
closed in P is the intersection of some subfamlly of the f&mlly
(F). As P itself is closed in P, we have:

(1.1) If Q is regularly imbedded in P, then Q is dense in P.

(1.2) If @ 1is regularly imbedded in P and if Q C P,C P, then
Q 13 regularly imbedded in P,.

Definition. Let @ C P. The point z ¢ P is said to be a Q-
regular point of P if, for any set @ C P —z closed in P, there
exists a set F closed in Q such that ®C FC P — z, F 1nd10atmg
closure in P. Clearly:

(1.3) @ C P is regularly imbedded in P if, and only if, (@) Q
18 dense in P, (1) any point x € P i3 Q-regular in
 (L.4) If x € P is a regular point of P, then x 1s Q—regular for any
set @ dense in P.
Proof. Let @ C P — z be closed in P. Then P — @ is a neigh-
borhood of z in P. As z is a regular point of P, there exists an open

*) We consxder only spaces in which the closure of any point set is
.closed and, for convenience, we make also the easily avoidable assumption
(not made by Wallman) that each finite point set is closed.



neighborhood U of z in P such that U C P — ®. The set F =
=@Q—UisclosedinQand FCP—UCP —x.AsQ =QU + F,
we have P = Q C U—i—FC(P—@)—{—F, whence @ C F.

Definition. A space P is called nearly regular if any @ dense
in P is regularly imbedded in P. From (1.3) and (1.4) we have:

(1.5) Any regular space is nearly regular.

Definition. A space P is called hereditarily mearly regular
(h. n. r.) if every subspace of P is nearly regular. Since regularlty
is a hereditary property, (1. 5) gives:

(1.6) Any regular space is h. n. r.

From (1.2) we see at once:

(1.7) If every closed subspace of P is nearly regular, then P s
h.n.r.

Example 1. The space P; consists of the points z,; (n =

=1,2,3,...,¢t=1,2,3,...), ax(n=1,2,3,...), and 2. Each
point @,; is an isolated point. The point x, possesses the funda-
mental neighborhoods Uu(k = 1,2, 3,...) consisting of =, and

Zni (1 = k). The point z possesses the fundamental neighborhoods
Vi (k=1,2,3...) consisting of z and xn;i (n = k, ¢+ = k). Clearly
P,isa countable Hausdorff space satisfying the second countability
axiom; each point except z is regular. The subspace @, consisting
of z and all ,;’s is dense in P,, but Q, is not regularly imbedded
in P,, since the set @ consisting of all x,’sis closed in P,, but @ is

not of the form I7F for any family (F) of sets closed in @,. Hence
P, is not nearly regular.

Example 2. The space P, consists of the points xni;, ¥ai
m=1,23,...,1=1,2/3,...), #a(n =1,2,3,...), and z. The
points x,; and y.; are isolated. Each point a, possesses the funda-
mental neighborhoods U, (k = 1, 2, 3,. . .) consisting of the points
Zni (¢ > Kk), yni 0 > ), and z,. The pomt 2 possesses the funda-
mental neighborhoods V; (k = 1, 2, 3,...) consisting of the points
ZTni (M =k, 1 > k) and =. Again, P2 is a countable Hausdorff
space satisfying the second countability axiom and z is the only
irregular point of P,. We shall prove that P, is nearly regular.
Let @ be any dense subset of P,; clearly Y C Q, Y being the set
of all ya’s. By (1.3) and (1.4) we have only to show that the point
zmQ -regular. Let @ C P, — x be closed in P,. Then F = Q& + Y,
is s closed in Q, Y, being the closure of Y in Q and clearly @ C Fc
CPy—z=. Hence z is Q-regular. Therefore P, is nearly regular, but
not hereditarily, which follows from example 1.

Example 3. Let M be any uncountable set. The space P,
consists of the points z,, (n = 1,2,3,...,ue M), z,(n =1, 2, 3,...),
and z. The points z,, are isolated. Each point z, possesses the
fundamental neighborhoods U,x consisting of the points =z,
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(ue M — K) and z,, where K runs over the family of all finite
subsets of M. The pomt z possesses the fundamental neighborhoods
Vi— Sy (k=1,2,3,...), Vi consisting of the points ,, (n =k,
neM) and Si runnmg over the family of all countable subsets of
V. Clearly P, is a Hausdorff space and z is the only irregular point
of P,. We shall show that the space Pj is k. n. r. Let @ denote

any subspace of P, such that z& Q. By (1.3) and (1.4) we have

only to show that, in the space @, the point z is @-regular. Let ‘
& C Q—z be closed in Q, hence in P,. Let X, (n=1,2,3,...)
denote the set of the points xa, (x € M). For each n such that the
set X,@ is infinite, ¢choose an infinite countable subset 7', of X, Q;

let 7, = 0 if X,Q is finite. Then F = Q@ + (§ T,.)o, the subscript

0 indicating closure in @, is closed in @ and 1t is easy to see that
& C F C P;— z, which proves z to be @-regular in Q.

2. Definition. Let n = 2 3,4,.... A subspace @ of a space
P is said to be n- combmatormlly imbedded in P if, for sy choice

F,, F,,...,F,of relatively closed subsets of § such that 1—[ F,=0
we have HF = 0. Clearly m-combinatorial 1mbedd1ng implies

n- combmatonal imbedding for 2 < n < m. The imbedding is said
to be combinatorial if it is n-combinatorial for each n = 2, 3, 4,.

Definition. A subspace @ of a space P is said to be comln-
natorially imbedded in P in the strong sense if, for any choice F,, F,

of relatively closed subsets of Q we have F,F, — F,F,. By an easy

induction, this implies ITF; = ITF; for any finite number of rela-
tively closed F; C @, so that combinatorial imbedding in the strong
sense implies ordinary combinatorial imbedding.

(2.1) Let @ be 2-combinatorially imbedded in a regular space P.
Then @ ts combinatorially imbedded in P in the strong sense.

Proof. Suppose, on the contrary, that there exist two relatively

closed sets ¥, C @ and F, C @ such that F\F, + F.F,. Then there

exists a point x ¢ F,F, — F,F,. Byr regularity, there exists an open
neighborhood U of # in- such that UF,F F'y = 0, whence gFlF = 0.
Clearly z € @,D, where the sets @, = F,U and @, = F,U are closed
in Q. But this is impossible, since ®,®, = 0 and  is 2-combinato-
rially imbedded in P.

For » =0,1,2, ... let w, denote the least ordinal number
of power &, and Z,, the set of all ordinal numbers & < ws.

Example 4. Let P, = Z, + »,. Each £ ¢ Z, possesses the
fundamental system of neighborhoods Upg, (n € Z,, n < &), where
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U,y consists of all ordinals { such that n < { < & The point w,
possesses the fundamental system of neighborhoods V. (¢ ¢ Z,),
where V, consists of w, together with all isolated ordinals 7 € Z,,
n > &. Clearly P, is a Hausdorff space and w, is the only irregular
point of P,. Then Z, is combinatorially imbedded in P,. Suppose,
on the contrary, that there exist relatively closed sets F; C Z,

~ (1 £ < n) such that IE[F.- =0 =+ ﬁf’, Then it is clear that no

1 1
F; is countable. But then there exist points & e Z, (k= 0,1, 2,...)
such that § < &, < &, < ... and

£1n€F1,5jn-'—1€F2, . 53‘n+n——-1€F G3=012,...)
which is impossible, since it implies lim & eHF Hence Z, is

combinatorially imbedded in P, but not in the strong sense. For
let F', consist of the points

§E6+1, 643,84 5,..
and F, of the points

§¢6+2,84+4,546,...,

£ € Z, running over all non isolated ordinals. The sets F, C Z, and

F, C Z, are relatively closed and we have w, ¢ F,.F,— F.F,.

Lemma.*) Let m, 4, %5, ..., tm be integers such that m > 1,
051, <8< ... <ty Let 8= 8(,1,, ..., 1) be the cartesian
product '

(Zs, + wi) X (Ziy + wi) X ... X (Z"m + wim)

in its ysual topology. Let A be a subset of Z; X Z;, X ... X Z;,
such that (w;, w;, ..., wi,) e 4. Choose an int;éger r such that
1< r<m and an ordinal x € Z;,. Then A contains a point (&,,
&y ..., ém)such that & = oy, for1 < s <m,s + rand o < & < o,
- Proof. The lemma being trivial for m = 1, we may assume

its wvalitidy for m — 1. Suppose first » < m. Smce (w,,, w,,, I
wi,) e A, for a given (ay, &y, ..., &m) € Zs, X Ziy X ... . the

set A contains points (£, &, ..., &m) such that oy < &, < wt,a P
cvesom < ém < w;,. The cardinal number of the set of all such

points (£, &, ..., 5,,,) béing equal to ,,, whence greater than the
cardinal number of Z;, X ... X Zi,, _,, the cardinal number of the

set of our points will remain equal to X,, even if we restrict the
*) This lemmsa is a fairly obvious generalization of a result of A.

Tychonoff (Math. Annalen 102, 1930, see Beha.uptung 1., on p. 5563 and
Behauptung III., on p. 565).
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first m — 1 coordinates to fixed, but conveniently chosen, values.
Therefore, A contains points (&, &, . . ., &) such that a, < & < w;,

for1<s<m—1and &, = w; - Now if B denotes the set of al]
(& oo s ma1) €2y, X ... X Zim_l such that (&, ..., En—, ©i,) ed

we have clearly (wi, ..., ws € B in the space S(iy, ..., tm—y).

m—)
The lemma being true for m — 1, B contains a point (&, ...,

.+» ém—) such that & =, for 1< s<m—1, 8+ r and & <
< & < w;,; but then (&, ..., &m—y, wi,,) € 4. Secondly, let r = m.
Choose («xg, ..., am) € Zy, X ... X Zi,. By transfinite induction,
we may construct a transfinite sequence (pi1) of type w;, of points
P2 = (&, - - -, Eam) € A such that &, < &y, ..., Eim < Eum for A <
< pu < o and &, > x,, ..., &, > «, for all 2’s. The point p =
= (&, ..., Em) = lim p; belongs to 4 and we have &, = w;, and
oy < & < w;, for 2 < s < m. Hence if B denotes the set of all
(b2 - - -, 8m) €Z;, X ... X Z;, such that (wi, &, ..., &n) ed we
have (w;,, ..., wi,) € B in the space S(iy, . . ., t,))- The lemma being
true for m — 1, B contains a point (&, ..., &) such that & = wi,
for2<s<m—1and« < &m < wi,; but then (wi, &, ..., &m)
e 4.

Example 5.*) Let n = 3, 4, 5, .... The space P; consists of
all n-tuples (&, &, ..., &) such that £.e Zi + w; for 1<i<n
and & = w; for at least one 5. We put z = (w;, w,, ..., wy,). The
point & = (&, &, . . ., &) € Py — 2 possesses the fundamental system
of neighborhoods Ve(nl, Nay o osMn) i€ Ziyms < Efor 1 <2 < m)
consisting of all n-tuples ({,, oy - -+»Cn) e Pysuch that 9, < & < &
. for 1 < ¢ < n. The point 2 possesses the fundamental systenr:of
neighborhoods V(&,, 52, ceus En) (& €Z; for 1 < 1 < n) consisting
of z together with all points (5, 75, ..., 7n) € P, such that 7; > &
for 1 < ¢« < » and #; = w; for one and only one value of . Clearly
Py is a Hausdorff space and z is the only irregular point of P;. For
1 < t < m, let @; consist of all points (£, &, .. ., &) € Py — 2 such
that &; = w, Then the sets @, C P; — z are relatively closed and

we have I_I ®; = 0, H &@; = 2z, whence Py — zis not n-combina-

torially lmbedded in P, However, we shall show that this im-
bedding is (» — 1)-combinatorial. First,.let us put 8; = S(j,, ...,
«++yjn—1) (see the lemma above) the sequence j;, ..., fn—; being
obtained from the sequence 1, 2, ..., n by cancelling the term 3.
If i (1 <4< n) denotes the cancelling of the i-th coordinate,

*) This example (for n = 3) is due to M. Kat&tov.
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then fi(®; + 2) = 8; is 1 — 1, though not topological; however,
the partial transformation f;(®;) = 8;— 2z is a homeomorphism.
Now let the sets F, C Ps—2z (1< r < n — 1) be relatively closed

n—1 —1

and let z € l_IF We have to show that HF #+ 0. Since Py — 2z =
= Z ®@;, for each 7(1 < r < n— 1) there must exist an (1 < ¢, < n)
. peal

such that z e If_’:d—),r Now this relation valid in the space P; evi-
dently implies the analogous relation z e f; ( (F, ;. —) in the space

S;, where @'; = D, Z @;. Since r assumes only n — 1 values,
}T"r

there exists an integer s such that 1 < s < n and s =i= @, for 1 <

< r £ n— 1. Using the lemma and recalling that f; (®;) = S;, — 2

is a homeomorphlsm we see that, for any given ordmal x € 7 and
forany r (1 < r < n— 1), there exists a point p= (§,, &, ..., &) e
em, such that & =ow; for 1 < i< n, i s and & < § < w,.
Of course, we have p ¢ F,®; since the set F,®; C Ps—z is relati-
" vely closed. By induction, we may now construct an infinite

sequence of points pr = (&, &ka, - - -, &) such that & = w; for
1<i<m 1 +s and all k’s, SI,<£23<§3,<...<w, and
pkeF,Qi for 1<r<n—1, k=rmod (n—1). There exists

—1

the limit point p = lim p; and clearly pe [—[F,, whence n F, £ 0.

3. Let @ be any given topological space We recall brlefly the
definition of Wallman’s bicompact space w@ D Q. Points of w@ — @
will be called ideal points and points of @, real points. We have to
define first the ideal points and secondly the topology of w@. An
ideal point « is, by definition, a collection of subsets of @ (called
the coordinates of «) having the following properties:

(¢) the elements of the collection are non vacuous closed
subsets of @,

(1t) the intersection of any finite number of elements of the
collection belongs itself to the collection,

(#93) any closed subset of @ intersecting each element of the
collection belongs itself to the collection,

(i) the intersection of the whole collection is vacuous.

For any open subset G of @, let G* consist of all real pomts
belonging to G and of all ideal points « such that there exists some
coordinate A C G of a. If G runs over the family of all open
subsets of @ then G* runs over an open basis of w@, thus
defininfg the topology of w@. For any closed subset F' of @, the
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closure F of F in w@ consists of all real points belonging to F' and
of all ideal points « such that F is a coordinate of .

(3.1) The imbedding of an arbitrary topological space @ in
Wallman’s bicompact space w@) is both regular and combinatorial in
the strong sense. '

Proof. We begin by proving that the imbedding is regular.
Q is clearly dense in w@). Let x be any point (real or ideal) of w@
and let @ be a closed subset of w@ not containing x. By (1.3) it
suffices to indicate a closed subset F of @ such that ® C F C w@ — .

Since « belongs to the open subset w@ — @ of w@, there exists an
open subset G of @ such that x ¢ @* C w@Q — @. Then F = Q — G
is a closed subset of ). Since x ¢ G@*, we cannot have x ¢ F. This
is evident if z is real; if z is ideal, then z € G*, x ¢ F would mean
that o has a coordinate 4 C @ as well as the coordinate F, which
is impossible as GF = 0. It remains to show that x ¢ F for any
x € @. For a real x this is a consequence of the evident relation
QP C Q— G = F; if « is ideal, the inclusion @* C w@Q — @ shows
that, since « ¢ @, any coordinate of x meets @ — @ = F so that
F itself is a coordinate of x whence x ¢ F.

It remains to show that the imbedding is combinatorial in
the strong sense. Let F'; and F, be two closed subsets of @ and let
o e F\F,; we have to prove that x ¢ F,F,. This being evident for
a real «, let « be ideal. Then « € F;, x ¢ F, means that both F, and
F, are coordinates of x so that F,F, is also a coordinate of « whence
xeF.F, ® :

(3.2) Let the space @ be both regularly and 2-combinatorially
imbedded in the bicompact space P. Then there exists a homeomor-
phism f(wQ) C P such that f(x) = x for each x € Q. If the imbedding
18 combinatorial, we have f(w@Q) = P.¥*)

Proof. For any X C @, let X denote the closure of X in the
space w@ and X, the closure in the space P. For z € Q, let f(x) = .
We next define f(«) for an ideal point « of w@Q. Now « is, by defi-
nition, a collection of closed subsets of @ having properties (¢) to
(). Let «® denote the collection of all sets A, 4 running over «.
‘By properties (¢) and (i), the intersection of a finite. subcollection
of «” is never vacuous; the space P being bicompact, the inter-
section ¢(x) of the whole collection «° is not vacuous either; by
property (iv), @.p(x) = 0. Hence ¢(x) contains at least one point
BeP—@Q. We have B¢ A for any 4 e x. Conversely, let F be a
closed subset of @ such that 8 e F. Then AF contains § for any

*) We do not know whether f(wQ) = P whenever the imbedding is
2.combinatorial. .
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A € «. The imbedding of @ in P being 2-combinatorial, it follows
. that AF =+ 0 for each A4 € «, whence F € « by property (si¢). Hence
the collection « consists exactly of those closed subsets 4 of @
for which the relation f ¢ 4 holds true. Now by regularity of the
imbedding of @ in P, the one point closed subset (8) of P is the
intersection of all such A’s. It follows that the set ¢(x) consists of
just the one point § and we may put f(x) = S. The transformation
f(w@) C P so defined is clearly 1 — 1 and f(x) = « for each x € Q.
Let us put f(wQ) = P, so that Q C P,C P. . 3

For any closed subset~F of @ we must have f(F) =="P,.F.
Suppose first that f e Py.F; we have to prove that fef(F). If
Be@, then g e F C f(F); hence suppose B e P,— ¢. By definition
of P,, there exists an ideal point o of w@ such that g = f(x); «
consists of all closed subsets 4 of ¢ such that fe 4; since B e F,
we have F e «, whence « ¢ F and f = f(x) C f(F). S}onversely, let
B € f(F) so that e P,; we have to prove that e ¥. There exists
an « € F such that f = f(«). If « is real, we have f = x ¢ ' C f(F).
If « is ideal, then & ¢ F means F e x, whence f = f(«) ¢ F.

Let C, be a closed subset of P,. There exists a closed C of P
such that Cy = P,.C. The imbedding of @ in P being regula{,
there exists a family ¢ of closed subsets F of @ such that C = IIF,
whence €y, = ITP, . F, F running over ¢. But P,. F = f(F) and the
transformation f being 1—1, we have C,= IIf(F) = f(IIF).
Hence each closed subset C, of P, has the form C, = f(®), P being
closed in w@. Conversely, let @ be closed in wQ. By (3.1), the
imbedding of @ in w@ is regular. Hence there exists a family ¢
of closed subsets F of @ such that @ = ITF. The transformation
f being 1 — 1, we have Cy = f(®) = IIf(F) = IIP,.F = P,.1IF.
The set C, is the intersection of P, and a closed subset of P; there-
fore, (', is closed in P,. Consequently, the closed subsets of P, are
precisely the sets f(®) with '@ closed in w@Q, which proves that the
transformation f is topological.

Now suppose that the imbedding of @ in P is combinatorial
and choose e P. We have to prove that B e f(w@). This being
evident for B e @, suppose' f e P — Q. The imbedding of @ in P
being regular, there exists a family ¢ of closed subsets F' of @ such
that § = ITF for F ¢ ®. Since f ¢ P — @, we must have IIF = 0.

LI
Now for any finite subfamily F,, F,, ..., F,of @, we have f ¢ 1—[ F;,
1

whence [ # 0, the imbedding of @ in P being combinatorisl.
;3
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As the space w@ is bicompact, there must exist a point « e IIF
for F € @. Since f(F) = P F C F, we have f(x) C IIF = B, whence
B = f(«) € [(0@Q).

4. Two points a and b of a space P will be said to be H-sepa-
rated if there exist two open sets G, and G, such that a e Gy, b ¢ G,
G,G, = 0. A Hausdorff space is then a space such that any two
distinet points are H-separated. As was shown by Wallman (L. c.),
the space w@ is a Hausdorff space if, and only if, the space @ is
normal. We consider here the question of H-separability in @
of two real points, a real and an ideal point, and two ideal pomts
Clearly two H-separated points of a space P are H-separated in
every subspace of P containing them.

For a Hausdorff space @, two real points are always H-sepa-
rated in w@. This is a consequence of the following trivial theorem.

(4.1) If two points a and b are H-separated in a dense subspace
@ of a space P, a and b are H-separated in P.

Proof. There exist two open subsets H, and H, of @ such that
aeH,beH,, HH, = 0. Thesets F;, =Q —H,and F, = Q — H,
are closed in Qand aeQ —F,, be Q — F,, F, + F, = Q. There-
forea ¢ P — Fl, beP—F, F, +F,=P. Thesets G, = P—F,
and G, =P —F,areopenin Pand ae @y, be@,, GGy =0.

(4.2) A point a € Q is regular in w@ if, and only if, it is reqular
n Q.
Proof. If a is regular in w@ then, of course, a is regular in @ C
C o@ as well. Let a be regular in Q. If U is any neighborhood of
a in w@, there exists a neighborhood @ of @ in @ such that @* C U.
Since a in regular in @, there exists a neighborhood H of a in @
the closure of which in @ is contained in Q. It is easy to see that
H* is a neighborhood of a in w@ the closure of which is contained
in G*, whence in U.

(4.3) If a is an trregular point of the bicompact space P, there
exists a point b e P — a such that a and b are not H-separated.

Proof. There exists a neighborhood U of a such that V — U =+ 0
for every neighborhood V of a. If ¥; (1 < ¢ < n) are neighborhoods

of a, then n V: is also a neighborhood of @, whence -
; .

—_ n

17— U)D[[Vi—U +o.
1

1

The space being bicompact, there exists a point b such that b ¢ V —
— U for every neighborhood V of a. It is easy to see that @ and b
‘are not H-separated.

156



	
	Article


