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Casopis pro pastovani matematiky a fysiky, rot. 72 (1947)

On the asymptotic distribution of geodesics
on surfaces of revolution.

E.R. van Kampen and Aurel Wintner, Baltimore.
(Received October 5th, 1938.)

The present note deals with the distribution questions of a geo-
desic on a surface of revolution in the recurrent case. It is an
immediate consequence of the Kronecker approximation theorem
that such a geodesic, when not periodic, is dense on a domain &
which is either bordered by two parallel circles on the surface or -
is the whole surface (which then is of genus 1). It seems of some
interest to go beyond this fact, by considering also the asymptotic
density which bellongs to the different points of @. While the
existence of such a density is implied by the general theory of
distribution functions of almost periodic functions, it turns out
that a direct consideration leads not only to an existence proof
but also to the explicit representation of the density in geometrical
terms.

The result admits a dynamical interpretation, since the prin-
ciple of Maupertuis reduces the problem of a particle moving in
a field of force of radial symmetry to the problem of geodesics on
a surface of revolution whose ds? is determined by the force fun-
ction and the energy constant. The density of the asymptotic
distribution on @ then corresponds to the density of probability
belonging to the points of the circular ring in which the path des-
cribed by the ,,rotating ellipse’ is everywhere dense. Since this
density is obtained in explicit form, the result might have some
interest also in view of the applications of the theory of adiabatic
invariants*) to the’classical dynamical problem in-question. In
fact, the identity of a priori (,,geometrical’) probabilities with
asymptotic relative frequencies is proved, instead of being postu-
lated. :

In order to have a representation of the surface of revolution
which is valid in the large without exceptions whenever the geo-

- *) T. Levi-Civita, Drei Vorlesungen itber adiabatische Invarianten,
Hamburger Abhandlungen, 8 (1928), 323-—366. :
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desic is not of the la.symptotic type, it is convenient to use as
Gaussian parameters the arc length along the meridian and the
angle ¢ of rotation from a fixed meridian. Then the square of the
line element is ds? = dp? + r?dg?, where r = r(p) denotes the di-
stance from the axis of rotation.
Local singularities of the geometry of ds? will be excluded by
the assumption that the function r of ¢ has a continuous derivative
" and is positive in the p-interval under consideration. Denoting by
primes differentiations with respect to the arc length, those geo-
desics o = p(8), ¢ = @(s) along which p(s) is not constant are
identical with the solutions of the pair of equations

J)¢ =c, 0% + c¥r(e) = 1, (1)

which express the conservation of angular momentum and energy
(the vis viva is 1, since the arc length s is the time variable). Geo-
desics which either de not remain in a bounded portion of the
surface or tend asymptotically to a second geodesic when s -~ + oo
or 8 > — oo will be excluded. Writing the energy integral in the

form
0t =1—cr(e)?, - (2)

it is easy to prove that only two cases are possible:

(2) the expression on the right of (2), considered as a function
of o, has two successive simple roots, say ¢ = a and ¢ = b, and
this function of g is positive for a < ¢ < b;

(¢2) the function r(p) of p is periodic, the surface is a torus,
and p(s) is a strictly monotone function for — o0 < 8 < + 0.
Notice that a geodesic on a torus can.belong to case (z).

In case (¢), one sees from (2) that r(a) = r(b) = ¢, and that
r(e) <c if a < <b. It also follows from (2) that the function
o(8) of s is periodic with the period

) b
w=2 (1— ct/r(o)t} *do, 3

and that a and b are the maximum and minimum of g(s). Also if
- 8=0 belongs to p = a, then g(s) is an even function which is
strictly increasing for 0 < 8 < $ w. - ~
-~ In case (it), one has r(g) > c for every o. The expression on
the right of (2) is a periodic function of ¢- with the same period
a8 r(p). Since the expression on the right of (2) has no zeros by
assumption, it is clear from (2) that g(s) is, for — 0 < 8 < + o0,
strictly monotone, say increasing, and that if 4 > 0 is the least
positive period of r(p) and w denotes the positive number
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then there exists a function y(s) such that

o(8) = 28/w + x(s), where x(s + w) = x(s). (5)
(That the mean motion of g(s) is i/w follows from ¢(s 4+ w) —
—o(s) = 1) ~ '

The above description of the cases (¢), (1) implies that if the
problem of geodesics is thought of, for a fixed value of the inte-
gration constant c, as a conservative dynamical problem with a
single degree of freedom, the case (1) represents the case of a La-
grangian coordinate which is an angular variable (in the same sense
as the coordinate of an overturning.pendulum); while in the case
(4) the coordinate g is a linear coordinate which cannot be reduced
to a suitable modulus. ' ;

Let the case (¢) be considered first. Then, placing w(s) =
= ¢[r(o(s))?, the first of the integrals (1) can be written as

@'(8) = y(s), where y(s + o) = y(s), since o(s + ) = ¢(s).  (6)
If « denotes the integral of the periodic function y(s) over a period,
and ¢ = o(s) the indefinite integral of the function y(s) — «/w,
then, from (6), :

@(8) = a8/w + o(s), where o(s + w) = ofs). (7)

Since 7(g) is positive for @ < ¢ < b, and since x/w is the mean
value of the periodic function y(s) = c/r(e(s))?,. where min p(s) = @
and max g(s) = b, it is clear that the constant « is positive. Now
there are two cases possible, according as « is or is not commen-
surable with 2. In the first case, (7) together with g(s 4+ w) = o(8)
implies that the geodesic is a elosed curve on the surface; while.in
the second case the- approximation theorem of Kronecker shows
that the geodesic is everywhere dense on the portion :

0 : a<p<bh 0K p<2n (8)
of the surface. Only the latter case will be considered in what
follows.- : ' i
Choosing the notation such that a = min g(s) is attained at
s = 0, the even periodic function pfs) of period e is strictly in-
creasing on the interval 0 < s < } w. If p = p(s) is a point of the
geodesic belonging to a fixed s of this interval, let # = §(s), where
0 < # < im, be the angle betweeen the parallel circle ¢ = const.
through the point p(s) and the geodesic. Then d p/ds == sin #.
Hence (2) can be written in the form ’

sin & = { 1— ct/r(g)* }¥; 8o that cos & = c/r(e) (0 <8 < }w), (9) '
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i one chooses the orientation of the geodesic so that the integration
constant ¢ defined by (1) is non-negative. Actually, ¢ > 0, since
¢ = 0 would, by (1), imply that ¢ = ¢(s) = const., which contra-
dicts the assumptions.

For fixed numbers s;, s,; ¢;, p, such that

0<s<H<to, 0x@<gp<om (10)
let A denote the (o, ¢)-region on @ characterised by

A: e=10(), p(8) + o1 < @ < P(8) + @a, 8, <8 < 8y, (11)
where ¢(s), ¢(s) are the Gaussian parameters along the given geo-

desic. For a fixed integer =, let C, = Cy(s;, 8,) denote the arc of
the geodesic determined by

Ch: po=opnw+3), ¢g=g¢pnw-+s), s <s<Ss,. (12)
It is seen from (6), (7) that this C, is contained in the region (11)
if and only if
: @, < an < @, (mod 2x). (13)
It is also seen that if a point P of the geodesic is in the region (11)
and if the function p(s) is increasing at P, then there exists an
integer n such that P is on C,. Hence, if s is considered as a time
variable, the asymptotic relative measure of those dates s at which
¢(8) is increasing and the point (o(s), p(s)) isin A is
. (27w) = (Po— 1) (82— $1).
This is clear, in view of the irrationality of x/2z, from the Kro-
necker-Weyl approximation theorem. Now, from (2),
) Q2

(o) (pa—@1) (8a—81) = (2700) 7 (@ — 1) f {1—c?/r(e)?}tdo,

s (21
where o, = 0(s8;), 03 = ¢(3;). On thie other hand, if | 4 | denotes
the area of the subregion (11) of @, then

Q2
=%
. 4] = 2252 [ 2ar(o)d,
' @1
since the square of the line element on @ is ds* = dg? 4 r’dg?.
Hence, the asymptotic relative amount of time which the
geodesic spends in A in such & way that o(s) is increasing is
. Qs

- Ja—cnery e
.(27“0)_1 (p2— @1) (82— 81)/1A| =& o
wf 27er(0)do
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Letting p; and g, tend to a common limit g, it follows that if one
considers only the s-intervals at which p(s) is increasing, i. e. the
intervals

nw <s <+ $o, n—Oil + 2, . (14)

the geodesic is asymptotically distributed on @ in such a way
as to have the function

(2mw)—2 {1 — ¢2/r(e) 2 Hr(e) = (2mw) ! {r(o)? — 2}t (15)

of the poswlon on @ as asymptotic density of probability. It is
understood that this density is referred to the area measure on @.
Now, the density (15) depends only on the first of the Gaussian
parameters o, @, i. e., the density is constant along every parallel
circle of @. Since (15) has been calculated on the assumption that
8 is restricted to intervals of the form (14) and since the function
0(8) = o(s + ) is even, it is clear that the actual asymptotic density
of the geodesic is twice as much as (15). This means in view of (3)
and (9) that the asymptotic density of the geodesic on G is

(no) {r(g)* — %}t = (mcw tan §). . (16)

Since (4) also shows that tand vanishes only when the geodesic
reaches the bordering parallel circles ¢ = a and ¢ = b, it follows
that the density of thé geodesic-on @ is a function of the portion
along the meridian and becomes infinite on the boundaries of 6.
Needless to say, the integral of the density over O is 1, as easily
verified from (16); (3), and from the fact that the surface element
is d | A | = r(o)dedg.

The above considerations were concerned. with the case (z)
In the case (i7) of a torus, where g(s) varies monotonously from
— % to + oo, the densmy of probablhty of a non-periodic geo-
desic is given by

(2nw)—1 {r(0)?} t = (2ncw tan 9)—1. L))

It is not necessary to give a proof. In fact, the expression (15),
which is in case (7) the half of the density, is in case (17) the actual
density, since in case (/i) one need not separate intervals (11) of
increase of g(s) from the complementary intervals. Notice that
while the density (16) in case (¢) necessarily becomes infinite at
¢ = a and g = b, the density (17) on the torus is nowhere infinite.
This agrees with the fact o’(s) vanishes in case (¢#2) when the geo-
desic reaches the boundary of @ but cannot vanish in the case {it)
of the torus.

As an application, consider the path of a particle which moves
in an euclidean (X, Y)-plane under the action of a central force.
If R, @ are the polar coordinates in the (z, y)-plane, U(R) denotes
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