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On the equivalence of certain types of extension
of topological spaces.

By Miroslav Katétov, Praha.
(Received June 10, 1947).

There are several types of H-closed or compact, as the case
may be, extensions of a given topological space. Such extensions
of a space R are: E. Cech’s [1]!) compact space SR, defined for
every completely regular space R, H. Wallman’s [2] compact space
oR, P.S. Alexandroff’s [3] spaces «R and «'R, the first of them
defined for regular R, the second for completely regular R. In the
recent paper [4] of the author a descriptive characterization is
given of four types of extensions, denoted by TR, 'R, oR, o'R,
which are defined for any Hausdorff space R 2).

4 It is of interest to know for what spaces R some of these eight
extensions coincide. It is well known [3] that 'R = SR whenever
«'R, BR exist, i. e. for every completely regular space E. It is further
known that oR = SR if and only if R is normal. In the present note,
necessary and sufficient conditions are given for SR = =R, R = 'R
BR = oR, R = o’'R, as well as for wR = 7R etc. It is shown that
BR = =R for compact R only, BR = oR if and only if R = R, + R,
where R, is compact, R, is discrete. The conditions for SR = 7'R,
PR = o’R show the structure of R far less clearly and could be
probably replaced by simpler ones. :

First of all we describe the extensions wR, SR, TR, ...

Definitions. Let R be a topological space. A point x e R
is called semiregular if, for every neighborhood H of z, there exists

an open set G such that z ¢ @ C Int G C H. A set Q C R is said to be
regularly imbedded (Cech and Novék [5]) in R if, for every point

1) The numbers in brackets refer to the list at the end of the present
paper. :

2) I take the opportunity to corect the erroneous statement of problem
1in [4], p. 19. The problem should be stated as follows: ,,I do not know
what conditions a space P must satisfy in order that it might be imbedded
in a H-closed Hausdorff subspace of wP*". i
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zeR and every closed set F C R — z, there exists a set 4 CQ
such that F C A CR— 2. @ is said to be combinatorially imbedded

[5] in R if [ | F; = 0 whenever F;C Q are relatively closed and
n 1 .

[]1F:i=o.
1

The following four theorems are known. For the first of them
see [5].

" Theorem 1. Any T,-space R may be both regularly and combina-

rially imbedded, in an essentially unique way, in a compact T,-space
wR.

Theorem 2. Any completely regular space R may be imbedded
tn a compact Hausdorff space BR such that every bounded continuous
real function on R may be extended to a continuous real function on
BR. This imbedding is essentially unique.

Theorem 3. If R is normal, then fR = wR. If wR is a Haus-
dorff space, then R is normal.

Theorem 4. A completely regular space R is open in SR if
and only if R is locally compact.

Definitions. Let R be a Hausdorff space, @ CR Q = R.
Q is said to be hypercombinatorially imbedded i 1n R if 1—[ F, = H F;
whenever F; C Q are relatively closed and 1_[ F;is nowhere dense
in Q. @ is said to be paracombinatorially zmbedded in R if n G CQ
whenever G; C ¢ are relatively open and 1—1—[ G; = 9.

The following two lemmas and four theorems are given in [4].

Lemma 1. Let R be a Hausdorff space, Q C R, Q R. The
imbedding Q C R is hypercombinatorial if and only if F, F, = F, F,

whenever F,, F, are relatively closed subsets of Q and F, F, is nowhere
dense in Q. '

Lemma 2. Let R be a Hausdorff space, @ C R, Q = R. The imbed-

ding @ C R is paracombinatorial if and only if Gl G, C Q whenever @,
G, are relatively open subsets of Q and G4 Gy =

The above lemmas assert evidently that we -can put n = 2
in the definitions of the hypercombinatorial and paracombinatorial
imbedding without changing their meaning. It is worth mentioning
that an analogous lemma does not hold for the combinatorial imbed-
ding [5].
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Theorem 5. Any Hausdorff space R may be hypercombinatorially
imbedded in a H-closed?®) space TR such that R is open in TR and the
subspace TR — R is discrete. The imbedding is essentially unique.

Theorem 6. Any Hausdorff space R may be paracombinatorially
imbedded in a H-closed space t'R such that R is open in TR and
every point x € TR — R is semiregular. This imbedding is essentially
uhique.

Theorem 7. Any Hausdorff space R may. be imbedded both
hypercombinatorially and regularly in a H-closed space oR. This
1mbedding is essentially unique.

Theorem 8. Any Hausdorff spdce R may be imbedded both para-
combinatorially and regularly in a H-closed space ¢'R such that every
point x € ' B — R is semiregular. This imbedding is essentially unique.

Now we proceed to establish the conditions for the equivalence
SR = 1R, .

Lemma 3. If every nowhere dense closed subset of a regular
space R is compact, then R is normal.

Proof. Let Fl, F, be disjoint closed subsets of RB. Denote Int ¥,
by G, F;, — G by K. For each point x ¢ K choose an open set H(x)
such that x € H(x), H@x)F, = 0. Since K is compact there exist z;

such that Z H(z;) D K. Setting H = G + Z H (x,) we have H D F,,
HF, = 0. Hence R is normal.

Definition. A subset M of a topological space R is called
regularly nowhere dense if M = G, G, where G,, G, are open, G, Gy = 0.

Lemma 4. If every regularly nowhere dense closed subset of
a regular space R is compact, then, for every pair G, H of open sets
such that G C H, there emsts a continuous real function f on R such
that f(x) = 0 for x € G, f(x) = 1 forz e R— H

Proof. Denote Int G by G,, G — G, by K. For each point

z e K choose an open set U(x) such that xe U(x) C U(x) CH.
Since K is closed and regularly nowhere dense, therefore compa.ct

there exist x; ¢ K such that Z U(z;) D K. Seting U = G, + Z U (x:)

we have G CU ¢ U C H. The rest of the proof is now completely
analogous to that of the well known Urysohn’s lemma.

Theorem 9. Let R be a completely regular space. The imbedds
R CBR is hypercombinatorial (paracombinatorial) if and only 1

%) A Hausdorff space R is called/ H-closed if it is closed in any
Hausdorff space in which it is imbedded.

103



every mowhere dense (regularly mowhere dense) closed subset of R
8 compact.

Proof. I. Let the imbedding R C SR be hypercombmatonal
If F C R is nowhere dense and closed (in R), then F = F and since
(R is compact, so is F.

II. Let the imbedding E C SR be paracombinatorial. If ¥ C R
is closed and regularly nowhere dense (in R), then F = RG, Gy,
where Gl, @, are disjoint open subsets of R. Therefore F cG,G,CR,
whence F = F. Thus F is compact.

III. Suppose that every nowhere dense closed set FCR
is compact. Let F,, ¥, be closed subsets of R and let F = F, F,
be nowhere dense. Choose a point @ € F; F,. If we had z « SR — F,
there would exist an open (in fR) set H such that H D F,xz € R —H,
hence x ¢ F, — H F, — H. This contradicts the fact that, R being
normal by lemma 3, there exists by theorem 2 a continuous real
function f on AR such that f(z) = 0 for z ¢ F; — H, f(x) =1 for
zeF,— H.Therefore ¥, F, = F = F = F, F,. Hence by lemma 1
the imbedding R C SR is hypercombinatorial.

IV. Suppose that every regularly nowhere dense closed set
F C R is compact. Let ¢4, G, be disjoint open subsets of E. Denote
R@,G,by F; Fis ccompact, hence F = F. Suppose that @, G, + F;

choose a point « € G, @, — F. Then there exists an open set H such

that HOF,xe< fR—H, x e G, — H, x ¢ G, — H. This is a contra-
diction since by lemma 4 and theorem 2 there exists a continuous

real function f on SR such that f(z) = 0 for z e G, — H, f(z) =

for x¢ R— Q,— H. Hence G,G, = F CR which by lemma 2
proves that the imbedding R C R is paracombinatorial.

From the theorems 4, 6, 7, 8, 9 we obtain the following

Theorem 10. Let R be a completely regular space. Then
(1) BR = 'R if and only if R is locally compact and every regularly
mowhere dense closed set F C R is compact;

(ii) BR = oR if and only if every nowhere dense closed set F C B
18 compact;

(i) BR = o'R if and only if every regularly mowhere dense
closed set F' C R is compact.

In the theorem 11 we succeed to replace the condition for
SR = oR by a more 11]um1natmg one. As to SR = 7'R it is clear
that if R = R, + R, where R, is compact, R, is closed dicrete, then
the conditions for R = 7'R are satisfied. 1 do not know whether
they may be satisfied by a space R which does not admit of a decom-
position of the above kind.
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Lemma 5. In order that every nowhere dense closed subset of
a Hausdorff space R should be compact 1t 1s necessary and sufficient
that the set of all non-isolated points of R be compact.

Proof. The sufficiency being evident, we have only to prove
the necessity of the condition. Denote by S the set of all non-isolated
points of R. Let F¢ be, for every ordinal £ < x, a non-empty closed

subset of S; let F: D F, for § <n < x. We have to provel_[Fe =+

+ 0. If, for some &, F, (F — Int F¢) + 0 for every 7, & <§17 < «,
then we obtain | [ F, + 0 since F; — Int F; is nowhere dense and

n
closed, therefore compact. Hence we may suppose that there
exists, for every & <«, a & such that &§ < & < x, Fee C Int F..
Further we may suppose, for convenience, replacing if necessary
{F¢} by an appropriate subcollection, that Fs ., C Int Fe, Fe,, + F:
for every & < o. For each & < «, choose a point a; € Int F¢ — Fe.,
and denote by A4 the set of all a;. Evidently a; non ¢ @, = Int F, —
— F,; whenever 7 < «, 7 * £ Hence every point z e 4 'is an
isolated point of the set 4, but is not an isolated point of the whole
space R since A C S. Hence 4 is nowhere dense and so is B = A
as well. Therefore B is compact and from F:B + 0 we obtain

l:IIQ#O.

Theorem 10 and the above lemma imply v

Theorem 11. Let R be a completely regular space. fR = oR
tf and only if the set of all non-isolated points of R 1s compact.

Lemma 6. If the set of non-isolated points of a locally compact
Hausdorff space R is compact, then R = R, + R, where R,, R,
are disjoint closed sets, R, is compact, R, 1s discrete.

Proof. Denote by § the set of all non-isolated points of R.
For every poirt z ¢ S choose an open set G(z) such that z ¢ G(z)

and G( ) is compact. Since § is compact, there exist @; such that
H = Z G(x;) D S. The set R— H is both closed and open since

it contams isolated points only. Hence H = H = ? G(z;) is com-

pact. Setting B, = H, R, = R — H we obtain the requlred decompo-
sition.

Theorem 12. Let R be a completely regular space. fR = 1R
if and only if R is compact.

Proof. If R is compact, TR = R = BR. If R = 7R, then
by theorem 5 and 9 and lemma 5 the set all non-isolated points
of R is compact. Hence by theorem 5 and 4 and lemma 6 we obtain
R = R, 4+ R, where R,, R, are disjoint closed sets, R, is compact,
R, is discrete. This yields SR, = R, which is possible only for
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