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Conformal Invariants in Two Dimensions II.
Harry Leyy, Urbana, Illinois.
(Received April 19, 1938.)

In a previous paper!) the author studied conformal properties
of two or three curves on a surface. Here we continue that
investigation obtaining a series of functions determined by a one
parameter family of curves on an arbitrary surface. These functions
- are relative invariants under transformations of coordinates and
absolute invariants under conformal transformations. In §2 we
obtain some relations between these functions; in § 3 we obtain
the main theorems of this paper, necessary and sufficient condi-
tions, expressed in terms of the invariants, that a given transfor-
mation be conformal, and that given one parameter families of
curves (or given orthogonal nets) be conformally equivalent.

1. Let {C;} be a one parameter family of curves on a surface V
and let {C,} be its orthogonal trajectories. We can orient the normal
to any curve intrinsically by requiring that the positive normal
lie on the same side of the tangent geodesic as does the curve
itself.2) The tangent to a curve admits of no intrinsic orientation.
But for an orthogonal net we are able to orient the tangents
intrinsically by parametrizing the curves of each congruence so
that the positive tangents of each congruence coincides with the
positive normals to the other. With this convention, the Frenet
equations become

Diif = ki - DyAg = —kyAy¢ (1)
Doyt = — kydy Dydf = kydyt, ¢ =1, 2.

where D, represents the covariant differential operator along {C.},
and %, is the (geodesic) curvature of {C,}.

If V" is a second surface in conformal correspondence with V,
and if the correspondence is established by pairing those points

1) Conformal Invariants in Two Dimensions I, Casopis. We shall
refer to this paper as I.

%) Cf. I, §4, and Hlavaty, Differencidlni geometrie kfivek
& ploch a tensorovy podet.
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on the two surfaces which have equal coordinates, the fundamental
tensors are related by the equations '

9's = ogis. (2)
Let 4’y be the oriented unit components of the family on ¥’
corresponding to {C.}, so that

A. “‘ = eaa_%la‘. (3)

where ¢t is the positive square root and where e, are each
numerically equal to unity3.)

es =+ L. (4) -
From (3) (for o« = 1) we obtain by differentiation that
k' Ay = o= kyAgt + 0jA7 A" — o), (8)
where o; = 75% log ¢ and from (3) itself ?t follows that
k') = exoH(ky — Afa;) (6)
and the analogous relation obtained from {C,}
Ky = ejo 4k, — A0j). - (7

Let us designate directional differentiation along {C,} and {C,}
by the subscripts § and N respectively, so that for example
of of .
fo=higmw In=hpg
Then equations (6) and (7) may be written
gs = k2 — ela*klz,
oy = ky — e,aik’;. (8)

We shall have occasion to refer to the well known integrability

conditions.4)
fsw — fxs = kufs — kaf v - (9)
Finally we observe, if we indicate with 8’ and N’ the correspondlng
differentiation in V’, that
fs = o ¥fs, [ = egoHfy. (10)

If we differentiate equations (8) with respect to N and S
respectively, eliminate ¢s and oy by means of (8) themselves

%) If we assign a (non-intrinsic) positive direction of rotation on each
surface by defining the directed angle frem €;-te €y by sin © = Jg } A,’I,”‘

it follows that the given correspondence is directly or inversely con-
formal aecording as e;eg = 1 or — 1.

4) Graustein, Invariant Methods in Classical Differential
Geometry, Bulletin, Am. Math. Soc. 36 {1930), p. 497.
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and a.pply the integrability conditions (9), we obtain by an im-
‘mediate calculation (in which we must also use (10)) that

eieo{(K'1)s — (K'9)w} = o= (ky)s — (ky)n}- (11)

| g =0y y (12)
there follows our previous result,’) that

Vet (ks — (ko) w}

is an absolute conformal invariant for directly conformal trans-
formations while for inversely conformal transformations

Vgt s)s — Walwy = —Vol(k)s — (kaln.
¢ If we designate by 4,1 the invariant analogous to Beltrami’s
second differential parameter

Agd = Aij g

Since

it follows that
ky = — A,4;

and consequently Vg{ (ky)s — (kg)n} is expressed explicitly in terms
of the family {C;} alone The above equations thus mterpreted
give us a conformal invariant of a single congruence (or semi-
invariant, if ee, = — 1).

Although we shall speak throughout the remainder of this
paper of the conformal invariants of an orthogonal net we must
bear in mind that the invariant is determined completely by
a single one parameter family of curves.

) 2. From the invariant of the preceeding section we can develop
a sequence of invariants in the following way. Suppose F and F’,
functions referred to V and V' respectively, satisfy the equations

F' = g—nF. - (13)
If we differentiate with respect to S or N, make use of (10), and
eliminate the derivatives of a by means of (8) we obtain that
eF', = o——iF,, . (14)
{ e’y = o—"—4F,, (15)
where ,
F _Fs—2an2, F, = Fy— 2n Fk,
a.nd F', and F' » are the same functions of the primes.-
Let us define a sequence of functlons _
’ f = (kl)S == (ka)N» ' R (16)
L f (f“l “,)S_.-—(r + 2)k f‘l (17)

‘) Cf 1, §4 and the references there given to Kasner.
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fa,...a,Z = (fa,...&,)N—‘ (1’ == 2) kl fﬂ:.-.a,- (18)

where oy, 00, .., 0p =1, 2, r=10,1,2 ... and f's 4 is defined
by (17) and (18) written with primes. Then
r+2 r+2 '
elp+1 ezq+lg' 4 /,a,.--¢r = g 4 fa,...a,., (19)
where p is the number of subscripts 1, ¢ of 2 in the set « . . . &y,
Pt+g=r.

From (19) we see that the functions f, ., as thus defined
are conformal invariants of the net (except poss1bly for sign),
and therefore of a single congruence. They are not all algebraically
independent. For if we express f. . .12 and fa. . g1 in terms
of fs.. p and its derivatives and make use of the integrability
conditions (9) we obtain at once that

fac..p13— fa...p21 = (r +2) ffa...5 (20)

where r is the number of indices «...[H. Moreover from '(20)
itself we obtain by differentiation that

fa...812y — fa...p219 = (r + 2) (ffa...89 + frfa.. ) (21)

By induction it consequently ‘follows

fa.-,ﬁ=f1--~12---z+*:

where * represents f's with fewer indices than appear in f. . 5
and 1...1 2...2 is a permutation of x...p

From (20) we observe that if all the functions f. . . with
a given number of subscripts are equal, their common value must
be zero and that finally f itself must be zero. Likewise if f».. g, = 0
and f. . .p; = 0 we obtain by applying the mtegrablhty condi-
tions (9) that f... ., must vanish.

3. In this section we shall seek sufficient conditions that
a given point correspondence between two surfaces be conformal
and that given orthogonal nets be conformally equivalent. Let us
recall that in any point correspondence between two surfaces
there necessarily exists on each surface an orthogonal net whose
transform is also orthogonal. We shall call any such net a Tissot
net of the correspondence.- We -can associate with a pair of
corresponding Tissot nets two numbers e, and e, (2 = ¢,2 = 1)
in the following way: let the Tissot, nets be parametric on each
surface and let the directions of increasing parameter on.one
surface be the intrinsic orientations of the tangent vectors of the
net. Then on the second surface the intrinsic orientations deter-
_ mined by its net may differ in sign from the directions of i mcreasmg.
parameter. Let e, and e; indicate these differences in sign. With
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this agreement the functions f and f are completely determined:
we shall proceed to prove the following theorem:

If, in a point correspondence between two surfaces,
for a pair of corresponding Tissot nets
Vg exealk's)s — (k2w is equal to Vg{(k)s — (ka)x}
the two nets. are conformally equivalent.
The linear elements of the two surfaces may be written

ds? = E du? + G do? (22)
and
' dg? = ET2du? 4 QT2 dv?, T, > 0, Ty, > 0. (23) .
The curvatures of the parametric curves of (22) are given by®)
1 0 — 1 © =
by =— V—a%log VE, &, = _ﬁ%mg V@ (24)
so that
~ 02 G
Vgi= a5y 108 VE (25)

On the surface with fundamental form (23) we will have

A= 61_’ At = 6_2_
T.JE WAl
so that we obtain in place of (24) and (25)

’ — € 0

= ———log (T E y
1 T2VG ov g( IV )
e (26)
P _ T4 o A
By = V5 % %8 (T)®)
and consequently
71 = 1og (L2 E).
el ' = —=log (Tll/ z (27)

‘By virtue of our hypothesis the left hand sides of (25) and (27)
are equal; comparing the right hand sides it follows that

‘ log T, — log T's = @,(u) — @,(v).
U

T1=Tzv

~ Consequently

®) Cf. Bianchi, Lezioni di Geometria Differenziale, Pisa (1922),
P. 267. When we take geodesic curvatures as necessarily positive the formulas
of Bianchi are valid only if the directions of incredsing direction coincide
with the intrinsic directions of the net. Cf. Hlavaty, I. c.
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where U(V) is a function of u(v) alone. Substituting this value
of T; in (23) we obtam that

dg? = (IEU2 du? + GV2dew?). (28)
Now the transformatlon

u= [Udu, v= [Vdo

which represents only a change in the parametrization of the
curves of the net shows that the parametric net on (28) is con-
formally equivalent to the given net on (22).

The linear element (28) shows that a transformation which

leaves Vg f invariant (except possibly for sign) is not necessarily
conformal. We are able however to obtain sufficient conditions
that a transformation be conformal. The theorem follows:

If in a correspondence between two surfaces, gij
gif;, and g1f, formed for a Tissot net on one surface
are equal respectively to eeg'tf, eg'lf,, and eg'?f,
formed for the corresponding net and if f+0 the cor-
respondence is conformal.

To prove this theorem it is sufficient to prove it for the linear
elements given by (22) and »

ds? = EU?2du? + GV?2dov? (29)

(where U and V are functions of # and v» alone) since the
correspondence from (28) to (29) is already conformal and cor-
responding invariants for (28) and (29) are equal.

From (24) and (25) it follows that for the parametric net of (2£2)

we have -
oM 02
gt fl_( ) {auzav ou av%} - 30
and 02M oM
E\1( 3 M 2
9! fa = (—d) {Bu ov:  ou ov W}’ ) (31)
where ‘ _ :
= logl/-%- (32)

If we compute f'; and f', for the parametric net of (29) the equations
corresponding to the hypotheses of the theorem become the
following

%U —VEZL " 77 yo—-yvy (33)
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and
d V

V_ Yo —y». (34)

We shall show that functions U and V satlsfymg these equations

are necessarily equal (and therefore constant), so that (29) is

conformal to (22). If we differentiate (33) and (34) with respect

to v and u respectively and eliminate the derivatives of U and V
by means of (33) and (34) themselves, we obtain

(VU_VV) 0 VEfl 1 VEGflfz) =

w f 2z f

7y (2 Veh  LVEGHf) _
Ju —1v) (——f__?‘_ﬁ__ = 0.
By expanding the second factor in each of these equations and
making use of the defining equations (17) and (18) we find they

are reducible to
2ff12 - 3f1f25 2.ff21 - 3/1]2

respectively. If these quantities were zero it would follow from (20)
that f would necessarily vanish. But this is contrary to our hypo-
theses and therefore the first factor in (35), namely |/U — /v
must be zero. _

4. It is well known that the vanishing of f is a necessary and
sufficient condition that a net be isothermal.?) In this section
we propose to give some examples of nets for which f, = 0, f % 0.
Let us take a linear element in the form

(35)

dg? = du? + G de? - (36)
and then it follows from (25) and (30) that
Va—fl = Ryu + Ru Ry, (37)
where
=log |/&@ : (38)

and where the subscnpts indicate partial differentiation. If (36)
were Euclidean, o SVG would be zero and it would easily fellow
that the vanishing of f, inplies the vanishing of f, so that there
exists no family of curves in the plane with rectilinear orthogonal
trajectories and such that f, =0, f &= 0. We can however find
other examples of curves for which f. = 0. We obtain from (37)
that a necessary and sufficient condition is that

'Ruuvv‘*‘ R,R, = 0. ' (39)

) Cf. Hlavaty, 1. c.

~. 134



Multiply by e and integrate with respect to u, obtaining

) uy = VCP-R, V= V(‘U). (40)
If we multiply (39) in turn by R, and %Rv (which is possible
since the vanishing of V implies that f also is zero) we obtain
0 0
T (Ru)?=—2 E (e R V), (41)
0.1 0
T (Ro)2=—2 %e—R. (42)

By making use of (40) we can integrate (41) with respect to v
and (42) with respect to w obtaining

fem 20— oo
' 1 Vo1 )
Rvp=—_§Ruz+R°V+?VVI’ (V1= Vl(v)'

We can show that for any choice of the arbitrary functions U, V, V;,
(40) and (43) are completely integrable and consequently the
system (40) and (42) is equivalent to (39).

Let us now define a function a(u) as a solution of

. @' =3 (U— (@) (44)
and let us denote by R : .
R=R—a. (45)
The first of (43) then becomes . _
Riu=—3R2—Ru'. ' (46)

Since R, cannot be zero we obtain by one integration that
etE R, = 2¢ie—a
and integrating a second time it follows that
R =&+ 2log {fe2du + B}, (47)

where x and g are arbitrary functions of ». Returning to (40) and
the second of (43) we find that for R to be a solution the arbitrary.
functions already introduced must satisfy the following conditions

V = — 2008, , (48)
" +_%~(af)2—%-a'-—% VVL—": 0. (49)
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Finally since G = 2B, it follows that
o G = e2ata) (fe—* du + B)L

Conversely if we select arbitrary functions «(v), B(v), and a(u)
(subject to the restriction that g’ 4= 0) and if we define V by (48)
it follows that f; =0, f + 0. If we introduce new parameters
along the net by the transformation u = [e—2du, v = [e*dv
we obtain the canonical form

ds? = du® 4 (u + B)* do2

The invariant f, consequently vanishes for the parametric
curves of the linear element
1
de? = ———— (du? u 4 de?). 50
= T g @ e Ao (50)
But here the parametric curves are the bisectors of a net of
Tchebychef in which the angle w of the net is given by?)

tan fo = (v + B)2
We can find an example of such a net in the plane by
requiring (50) to have zero Gaussian curvature. One solution
is B = v; then one family of the net of Tchebychef consists of
parallel straight lines and the other family is generated by the
curves whose parametric equations referred to Cartesian coor-

dinates is?)
14 1644 8a?
=] =] ——— da.
e f1—16a4d"‘ y fl-}—lﬁ(x‘ *

More generally we can show by direct computation, the
following: let a net of Tchebychef in the plane be generated by
a straight line / and a curve C; its bisectors form an orthogonal
net for which f, = 0 if and only if the angle w between C' and
the lines parallel to [ satisfies the equation

2
(((11—(:)=sinw(a+acosw+bsinw),

where a, b are arbitrary constants and s is the arc of C.

As a last example we consider a net for which f,..., =0,
where the number of indices is m. If the linear element referred
to the net is £ du® 4 @ do? then f, ..., will still be zero for the

parametric net on a surface with linear element —g— du? 4 do?.

8) Cf. Bianchi, 1. c., p. 153.
%) Cf. Bianchi, 1. c., p. 16l.
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