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Conformal Invariants in Two Dimensions L
Harry Levy, Urbena, Illinois.
(Received February 4, 1938.)

The conformal geometry of Riemannian spaces has been
studied by Hlavaty, Cartan, T. Y. Thomas, Schouten, and others
who have developed various algorithms for » > 2. In particular,
Hlavaty!) has found the generalized conformal curvatures of
a curve. But for » = 2 a single curve has no conformal invariants
since any two surfaces are conformally equivalent. Here we shall
obtain some invariants of two or more curves in the two dimensional
case.
1. Let ¥V, and T”, be two Riemannian spaces in conformal
correspondence so that the coefficients of their linear elements

ds? = g, da? dar ds'? = ¢, da? da# (1)

can be taken in the relation
gllll = Ug“l‘ (A ® = 17 21 ¥ 8 ey n) (2)
The reciprocal elements g* and the determinant ¢ = | g4, | (which

we assume to be different from zero) then satisfy

. g =o-lgh ¢ =g 3)
The Christoffel symbols of the second kind, which we designate
by {:v} will satisfy the relation .

AV _ 4
{v“ } - {/41’} + 0u 6,* + 0, 6, — gy 0%, (4)
_where o =gMo# and o, = 5 5 log a?).

We assume that V, and V', are analytic so that g, and g’z
1) Zur Conformgeometrie, Akad. Wetensch. Amsterdam, Proc. 88
(1935), pp. 281, 738, 1008.
2) Cf. Eisenhart, Riemannian Geometry, Princeton University
Press (1926), p. 89.
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(and therefore o too) are continuous and have continuous derivatives
of all orders.

Let C be an analytic curve and C’ its transform. The unit

components of the tangent vectors, A;* and A'sy* respectively,
satisfy

Ayt = o= Agy* (%)

and we obtain by a direction computation that the components
of the principle normal (if defined) satisfy

Ky Noff = o= (ky dey* + 0, A1) Ay — 0¥), %) (6)
‘where k, and k’; are the first curvatures of C' and ¢’ respectively.
From equations (3) we have that ¢ = (¢’/g)V/» and therefore that
1 ¢ .,
Oy = 5-=—log (g'/g). M

If we eliminate o from (6) by means of (7) we obtain that C*#
defined by

1 . 0 3
Cr = gl {701 Aoy + 5 (9" — Ay Ayy") P log 9} (8)

is invariant under conformal transformations.

2. Henceforth we assume n» = 2. In this case there is a unique
direction normal to a given direction, and consequently we must
have

Nof =07ty  (r,s=1,2), 9
where the ambiguity in sign can be regarded as incorporated
in ¢~ itself. From (2) and (3) it then follows that

gV G e = g Aoy G (10)
and multiplying the right hand sides of (8) and (10) and contracting
we obtain that the expression I,, defined by

1 0
L=k + 5 of gz loga) (11)

is invariant under conformal transformations.
It will be convenient to write u” for 15" and simply A* for A;)
and
4 0
=9 =59
so that (11) may be written _
I, =gk + @ru'. ] (12)
'3) Cf. Modesitt, Some Singular Properties of Conformal

Transformations between Riemannian Spacés, Am. Journ. of
Math., 1938.’ ‘
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We obtain a sequence of functions I, (x =1,2,3,...) from
(12) by differentiation with respect to the arc s of the given
curve and multiplication by ¢,

d

I“ — (pa_sla__l (a == 2, 3, 4, o ) (13)

and clearly I, is (for all values of x) invariant under conformal
transformations. We can readily obtain by means of the Frenet
equations that the values of I, for « = 2, 3 are given by

d
Iy=¢* b+ @oru 2, (14)

dz d .
L=dgah TWel Qb+ otm@p—2ink+ o

+ @ (Prat + @ Pers) AT A,

where @,.. 4 is obtained from ¢,  , by the formal process of
covariant differentiation with respect to the g's,

0 U
Prs = 3 Pr— Pups
ete.

We can prove by induction that I,, for an arbitrary value
of «, has an expansion of the following form

Ia — ‘pa ]C(a—l) + Ux (pa——-l @r Zr k(a-—2)
+ {ba ™2 (@A) + (Ca + 1) @* s 7 2° -+ @ pre u” it (16)
+ da (pa—l (p,/.tr k} ka—-—l + *

where a,, b,, ¢,, ds are the constants given by

ﬂ.=—;—(a—2)(cx+l), b,=%(a—l)(rx——2)(a—3)(3a+4),
1 L (17)
c,=ma.(zx+ 1) (x—4), d“———?}—!(a—&) (62— 4),

and the * represents a polynomial in A%, u", @, @, ..., @r,.
kE.E, ... K9,
We can prove further by induction by means of (13) that

 Pys

I, regarded as a function of ", &k, k', . . ., >~V is an odd function
of these variables taken together, that is .
Io(—u, —k,—k, .., —k* D)= —1,, kL,...*§kD),

3. Let Ci (i = 1, 2, 3) be three curves concurrent in a point P,
of the surface V,, and let A;* be the contravariant components
of their unit tangent vectors and y; of their unit normal vectors.
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Choose a positive direction of rotation about P, and let ©; be
the directed angle from ;i1 to pite.4)

Three directions at a point in two dimensions are necessarily
linearly dependent, and it follows directly that the coefficients
of dependence for the normal directions are the sines of their angles,
so that '

,u])' sin @1 —I— ,uz)' sin @2 + Us) sin @3 = 0. (18)

If we write (12) for each of the three curves and evaluate at
their common point P, multiply each of these three equations
by the corresponding sin ®; and add, the terms in 4 drop out by
virtue of (18) and we obtain

2I,sin® = ¢ Lksin O, (19)

The left hand side is invariant under conformal transformations
and the right under coordinate transformations. We have con-
sequently the following theorem:

If three curves C; on a surface are concurrent and
if K; are the values, at their common point, of their
(geodesic) curvatures and 6,, @,, O, the directed angles
. from the normals to Cy, C4, C; to the normals to C, C), C,

4 —
respectively, then Vg (ky sin @ + k, 8in @, + kysin @) is an
absolute conformal invariant. ‘

TLis theorem has a particularly simple geometric interpretation
in the Euclidean plane; if we assume that k,k,k; == 0, the sum
with which we are concerned differs by a factor from

RyRysin @, + R,R, sin 6, + R,R, sin 0,

where the R’s are the radii of curvature, reciprocals of the K's
and we observe that this expression represents the area of the
triangle formed by the three centers of curvature. In particular,
it thén follows that if the centers of curvature for a com-
mon point of three curves in the Euclidean plane are
collinear, they remain collinear under conformal trans-
formations of the plane into itself.

The above results can be extended by writing in place of (18)
the linear equations satisfied by the A5 and by the products A,.
Let us assume for the sake of definiteness that the positive direction

of rotation has been chosen so that the angle from ;) to u;)is + i;—

Then @, and — O, are the directed angles from u;) to ug) and ug
respectively and we have that

4) It is of course understood that by Hyy we mean u, g if b > 3.
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Mgy’ = e (cos @4 Ayy" + sin Oz uyy7),
Ay’ = P (cos Oy A3y — sin O, uyy"),
ugy = —sin Oy A1) + cos Oguyy",
/43)' = sin 02 11)' -+ cos @2 /ll)',
where e(€) is + 1 according as- Ag), ug) (4s), u3y) and Ay, w1y have
the same or opposite orientation.
It follows by direct computation, by means of (20), that

sin 91 }.1)' + e sin 62 12)' 4+ € sin @3 13)’ =0 (21)

(20)

- and, denoting by S the symmetric part, that is

S {sin 20, 43y p1)® + e sin 260, Ag)" ugy* + € sin @4 43)" us*} = 0. (22
) #1)

We can now write (14) for each of the three curves, multiply
each I, by the appropriate 4 sin 20 and add the three products.
The terms in Ax drop out by virtue of (22) leaving

I,M gin 20, 4 ¢ 1, sin 20, + & I,® sin 20; =
= @? (k'y sin 20, + e K’y sin 20, + € K'; sin 20,).
Hence we have the theorem:

1f three curves C; on a surface have a common point
and if &'; is the value there of the derivative of the
(geodesic) curvature of C; with respect to its arc, if 6
is the directed angle from the normal to Ciy1) to the
normal to Ci;2 and ¢ and € are + 1 (as above defined),
then Vg (£, 8in 260, + ek'ysin 260, + ek'y sin 20,) is invariant
under conformal maps of the surface.5)

4. In the determination of the curvature of a curve an
ambiguity may arise in the choice of sign. Let us assume that
we take the (geodesic) curvature as always non-negative and that
thereby a positive normal is determined in accordance with the
Frenet equations.®) If we introduce normal coordinates at P,
and find the expansion of the coordinates of the points of a curve
in a neighborhood of P, we see that the given curve and its positive
principal normal lie on the same side of the geodesic tangent at P,
to the curve. Hence if two curves are tangent and lie on the same
side of their common tangent geodesic they have the same principal
normal whereas if they lie on opposite sides of their common
tangent geodesic their normals are directed oppositely.

5) If a conformal transformation of ¥V, into itself interchanges C,
and C, and leaves C, invariant this and the preceding theorem reduce to
special theorems obtained by Kasner in the plane. Cf. Geometry of
Conformal Symmetry, Annals of Math., 2nd series, vol. 88 (1937)
pp. 876—877. :

%) See, for example, Eisenhart, 1. c., p. 1086.
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Suppose C, and C; are tangent to each other but not to C,
and that their tangent vectors have the same direction. Then e
and € of equations (20) will have the same or opposite signs
according as C, and C, lie on the same or opposite sides of their
common tangent geodesic.  But in either case sin @, = 0 and
gin 20, = —sin 20; while sin @, = T sin @;. The preceding
theorem reduces to the following special case:

4 ]

Vg (ky F k) and Vg (k'y F ¥'3) are absolute conformal
invariants of two tangent curves where the F is to be
taken according as the curves lie on the same or opposite
sides of their common tangent geodesic.

4

The derivation of the result that Vg (ky F k) and Vg (B'y F Fy)
are absolute conformal invariants was communicated to the
writer by Professor Hlavaty who obtained it by methods only
different from the above. Others have obtained somewhat similar
results.?) :

If two curves are tangent and have contact of order A > 1
either &, = ky, &'y = k'p, . . ., by®® = [,»=2 and they lie on the
same side of their common geodesic tangent so that the positive
direction of their normals coincide or k, =k,=k';=. . .=k =0
in which case the positive directions of their normals need not
coincide. It follows from (16) and the remarks in the paragraph
following (17) that the functions I, for x = 1, 2, ..., h — 1 formed
for one curve are equal, except possibly for sign, to the corresponding
functions for the other curve and that the functions Iy differ only
in the first term so that '

I = [® = qv" (lcl(""'” 4 kz("—")),

where the I sign is to be taken according as the normals coincide
or are oppositely directed. Hence we have the result:

4—
If two curves have contact of order &,|/gh (k,*—DF k1)
is an absolute conformal invariant.

Equations (14) yield one final result. If C' and €’ are two
curves intersecting orthogonally, the pairs of directions 1), .,

?) Cf. Kasner, Conformal Geometry, Proceedings, Fifth Int.
Cong. 2 (1912) p. 81; Ostrowski, BeriihrungsmaBe, nullwinklige
Kreisbogendreiecke und die Modulfigur, Jahresb. Deut. Math.-
Verein. 44 (1934) p. 656; and Kasner and Comenetz, Conformal Geo-
metry of Horn Angles, Proceedings, Nat. Ac. Sciences (Washington) 22
(1936) p. 303. These writers restrict themselves to conformal transforma-
tions of the Euclidean plane into itself and naturally find only the relative
invariants &, — k, and k’; — k’;. Comenetz, Conformal Geometry on
a Surface, Bull. Am. Math. Soc. 42 (1936) p. 806 extends the results of '
Kasner and Comenetz to surfaces and notes that (', — k’y)/(k, — ky)? is an
absolute invariant. . :
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