

Werk

Label: Article

PURL: https://resolver.sub.uni-goettingen.de/purl?31311028X_0067 | log81

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Théorèmes d'existence pour les caractères des points

Par Bedřich Pospíšil, Brno.

(Reçu le 12 mai 1937.)

Dédié à la Mémoire de Miroslav Konečný.

Introduction.

Nos espaces satisferont à l'axiome A de M. Hausdorff¹) sans satisfaire en général aux autres. Les petits types allemands désigneront des puissances infinies; j'écris $\exp x = 2^{x}$. Désignons encore par $\mathfrak{p}(M)$ la puissance de l'ensemble M.

Sous le nom de (i) caractère $\chi_E(S)$ ou (ii) pseudocaractère $\psi_E(S)$ ou (iii) quasicaractère $\omega_E(S)$ resp. du sous-ensemble S de l'espace Eon entend2) la plus petite puissance d'un système (i) complet ou (ii) pseudocomplet ou (iii) quasicomplet resp. d'entourages de S dans l'espace E, c'est à dire d'un tel système $\mathfrak A$ que, si l'on désigne par Cla partie commune de tous les $U \in \mathfrak{U}$, on a toujours, pour un entourage G quelconque de S dans l'espace E, (i) $U \subset G$, U étant un élément de $\mathfrak U$ qui dépend de G ou (ii) $C \subset G$ ou (iii) $G - C \neq \emptyset$ resp. De plus, la relation $\omega_E(S) = 1$ veut dire qu'il n'y a pas de tels systèmes quasicomplets \$1.

Dorénavant, le symbole I (muni d'indices éventuellement) désigne toujours un espace non isolé satisfaisant aux axiomes A, B, C, D de Hausdorff¹) ne contenant qu'un seul point qui ne soit pas isolé; ce point sera désigné toujours par le symbole ∞ muni des mêmes indices que l'est I. De plus, j'écris $\chi(\infty)$, $\psi(\infty)$, $\omega(\infty)$ resp. au lieu de $\chi_I(\infty)$, $\psi_I(\infty)$, $\omega_I(\infty)$ resp., supposé que les symboles I et ∞ soient munis des mêmes indices.

A tout espace I faisons correspondre un espace N (le symbole Nayant les mêmes indices que I) dont les points seront les suites finies $p = \{p^1, p^2, \ldots, p^n\}$ avec $p^k \in I - (\infty)$; posons $n = \lambda p$.

¹⁾ Grundzüge der Mengenlehre, p. 213.

²⁾ Alexandroff-Urysohn, Mémoire sur les espaces topologiques compacts, Verhandelingen d. konink. Akademie von Wetenschappen te Amsterdam, Deel XIV, No. 1, Sectie I.

Soit U_p l'ensemble de tous les $q=\{q^1,q^2,\ldots,q^n,\ldots\}$ ϵ N avec $\lambda q \geq \lambda p$ et $q^k=p^k$ pour $k=1,2,\ldots,\lambda p$. Les entourages (définissants) du point p dans l'espace N seront les ensembles $O_p=U_p-\sum_x U_x$ avec $x\in U_p-(p),\ \lambda x=\lambda p+1$ et $x^{\lambda x}$ parcourant un ensemble $X\subset I$ tel que O=I-X est un entourage de ∞ dans I. Un tel O_p est déterminé par p et O.

Lorsque (i) les caratères ou (ii) les pseudocaratères ou (iii) les quasicaratères resp. de tous les points d'un espace E sont égaux l'un à l'autre, leur valeur commune sera désignée par (i) $\chi_0(E)$ ou (ii) $\psi_0(E)$ ou (iii) $\omega_0(E)$ resp.

0.1. L'espace N est un espace complètement normal de dimension 0; de plus, $\mathfrak{p}(N) = \mathfrak{p}(I)$, $\chi_0(N) = \chi(\infty)$, $\psi_0(N) = \psi(\infty)$, $\omega_0(N) = \omega(\infty)$.

Les axiomes A, B, C, D ainsi que nos égalités pour N étant faciles à vérifier, on n'a qu'à prouver la normalité complète de N. Car on voit sans peine que les entourages définissants dans N sont tous ouverts et fermés en même temps; c'est alors que N est un espace de dimension 0. Les sous-ensembles F_1 et F_2 de N soient séparés. Il existe alors, pour tout point p de F_i , un entourage (définissant) O_p disjoint de F_j , $i=1,2;\ j=1,2;\ i\neq j$. Soit $G_i=\sum_{p}O_p$ où p parcourt F_i . La démonstration de la relation désirée $G_1G_2=\emptyset$ se réduit à prouver que $O_pO_q=\emptyset$ pour $p\in F_1$, $q\in F_2$ ce qui est bien facile.

0.2. L'espace I étant du type L de M. Fréchet, l'espace N l'est également.

Le point p de N-M soit contenu dans la fermeture dans N de l'ensemble $M \subset N$. Alors $MU_p \neq \emptyset$ et $\lambda m > \lambda p$ pour $m \in MU_p$. Soit M^s l'ensemble de tous les m^s avec $m \in U_p$. M, $s = \lambda p + 1$. Alors, la fermeture dans I de l'ensemble M^s contient le point ∞ . Par hypothèse, M^s contient une suite infinie dénombrable π_r qui converge vers ∞ . Soit $p_r \in MU_p$, $p_r^s = \pi_r$; alors, $p_r \to p$, c. q. f. d.

Désignons par $I_1(\times)I_2(\times)\dots(\times)I_n$ l'espace I_0 que je vais définir. Cet espace se compose de deux parties disjointes, l'une ne contenant que le point ∞_0 et l'autre dont les éléments sont les suites finies $\{x_1, x_2, \dots\}$ avec $x_k \in I_k - (\infty_k)$. Les entourages (définissants) de ∞_0 dans l'espace I_0 seront les ensembles $O_1(\times)O_2(\times)\dots(\times)O_n$ qui se composent de ∞_0 ainsi que de tous les $\{x_1, x_2, \dots, x_n\}$, où x_k parcourt un entourage O_k de ∞_k dans I_k donné d'avance. On prouve sans peine le lemme suivant.

0.3. Lorsque $I_0 = I_1(x) I_2(x) \dots (x) I_n, k = 1, 2, \dots, n,$

on $a \ \mathfrak{p}(I_0) = \max_k \mathfrak{p}(I_k), \ \chi(\infty_0) = \max_k \chi(\infty_k), \ \psi(\infty_0) = \min_k \psi(\infty_k),$ $\omega(\infty_0) = \min_k \omega(\infty_k).$

Dorénavant, l'espace $I_0 = I_1(+) I_2(+) \dots (+) I_n$ se composera du point ∞_0 ainsi que de tous les couples ordonnés $\{x, k\}$ avec $x \in I_k$ — (∞_k) ; O_k parcourant les entourages (définissants) du point ∞_k dans l'espace I_k , les ensembles-sommes $(\infty_0) + \sum_{\mathbf{k}} \{O_k - \mathbf{k}\}$ $-(\infty_k)$ = O_1 (+) O_2 (+) . . . (+) O_n parcourront les entourages (définissants) du point ∞_0 dans l'espace I_0 . On tire immédiatement les deux lemmes qui suivent.

0.4. Soit $I_0 = I_1(+) I_2(+) \dots (+) I_n$, $k = 1, 2, \dots, n$; on a $\mathfrak{p}(I_0) = \max_k \mathfrak{p}(I_k), \quad \chi(\infty_0) = \max_k \chi(\infty_k), \quad \psi(\infty_0) = \max_k \psi(\infty_k),$ $\omega(\infty_0) = \min_k \omega(\infty_k).$

0.5. Les espaces I_k étant du type L de Fréchet, il en est de même de

l'espace I_1 (+) I_2 (+) ... (+) I_n . Dorénavant, l'espace $I^0 = I(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})$ avec $\mathfrak{v} \leq \mathfrak{u}$ sera la somme de trois ensembles disjoints (∞^0), U, W avec $\mathfrak{p}(U) = \mathfrak{u}$, $\mathfrak{p}(W) = \mathfrak{w}$. Les ensembles $I^0 - K - W$ avec $K \subset U$, $\mathfrak{p}(K) < \mathfrak{v}$ parcourront les entourages définissants du point ∞^0 dans I^0 . Le couple $\mathfrak{u}, \mathfrak{v}$ est dit régulier, lorsque, ou bien ses alephs sont réguliers tous les deux, ou bien $\mathfrak v$ est régulier et $\mathfrak v < \mathfrak u$. Je désigne encore par $(\mathfrak u/\mathfrak v)$ le nombre de tous les sous-ensembles de puissance < v d'un ensemble de puissance u. Le lemme suivant est bien facile à prouver.

0.6. Soit \mathfrak{u} , \mathfrak{v} un couple régulier, $\mathfrak{v} \leq \mathfrak{u}$; soit $I^0 = I(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})$. Alors, on a $\mathfrak{p}(I^0) = \max(\mathfrak{u}, \mathfrak{v})$, $\mathfrak{u} \leq \chi(\infty^0) \leq (\mathfrak{u}/\mathfrak{v})$, $\psi(\infty^0) = \mathfrak{u}$, $\omega(\infty^0)=\mathfrak{v}.$

0.7. Soit $I_k = I(\mathfrak{u}_k, \aleph_0, \mathfrak{w}_k)$, $I_0 = I_1(\times) I_2(\times) \dots (\times) I_n$, $k = 1, 2, \dots, n$. Alors, I_0 est un espace L de Fréchet avec $\mathfrak{p}(I_0) = \max_k (\mathfrak{u}_k \mathfrak{w}_k)$, $\chi(\infty_0) = \max_k \mathfrak{u}_k$, $\psi(\infty_0) = \min_k \mathfrak{u}_k$, $\omega(\infty_0) = \aleph_0$.

En effet, le point ∞_0 soit contenu dans la fermeture dans I_0 d'un ensemble $M \subset I_0 - (\infty_0)$. Soit O_0 un entourage définissant quelconque de ∞_0 dans I_0 . Admettons que l'on ait déjà défini les points p_1, p_2, \ldots, p_r de MO_0 . Soit O_k un entourage de ∞_k dans I_k qui ne contient aucun point $p_{k\nu}$ avec $\nu = 1, 2, \ldots, r$ où $p = \{p_{1\nu}, p_{2\nu}, \ldots, p_{n\nu}\}, p_{k\nu} \in I_k$. Soit $p_{r+1} \in MO_0$ $(O_1(\times) O_2(\times) \ldots (\times) O_n)$. On a $p_r \to \infty_0$, c. q. f. d.

I. Dans tout espace qui satisfait à l'axiome B de Hausdorff, les χ et les ψ sont = 1 ou infinis. Dans un espace de puissance χ , tous les χ sont $\leq \exp \mathfrak{x}$. Si tous les points de cet espace sont fermés, on a de plus $\psi \leq \mathfrak{x}$. On a toujours $\omega \leq \psi \leq \chi$. Cherchons à trouver les cas qui sont vraiment possibles pour les espaces aux points fermés assujettis à l'axiome B. La lettre N, munie d'indices eventuellement, désigne toujours un espace complètement normal de dimension 0.

1. Soit $\mathfrak{a} \subseteq \exp \mathfrak{h}$, $\mathfrak{z} \subseteq \mathfrak{a}$, $\mathfrak{z} \subseteq \mathfrak{h}$. Alors, il existe un espace N^1 de puissance \mathfrak{h} et tel que $\chi_0(N^1) = \mathfrak{a}$, $\psi_0(N^1) = \mathfrak{z}$.

En effet, pour $\mathfrak{h} \subseteq \mathfrak{a}$, $\mathfrak{z} = \mathfrak{x}_0$, on n'a qu'à poser $N^1 = N$ où I est l'espace du dernier théorème de mon article cité ci-dessous.³) En général, soit $I_1 = I(\mathfrak{z}, \mathfrak{x}_0, \mathfrak{h}), \ I_2 = I(\min{(\mathfrak{a}, \mathfrak{h})}, \mathfrak{x}_0, \mathfrak{h}).$ Pour $\mathfrak{h} \subseteq \mathfrak{a}$ et $\mathfrak{a} \subseteq \mathfrak{h}$ resp., je pose $I^1 = I_0 \ (+) \ \{I_1 \ (\times) \ I_2\}$ avec $I_0 = I$ où $I_0 = I''$ resp. où I'' est un espace défini de la même façon que I où l'on a remplacé \mathfrak{h} par le plus petit aleph \mathfrak{h}'' pour lequel on peut

avoir $\chi(\infty'') = \mathfrak{a}$.

Chaque système complet d'entourages du point p dans l'espace E contient un sous-système complet de puissance $\chi_E(p)$; il n'en est pas ainsi des systèmes pseudocomplets. En effet, soit $\mathfrak{z} < \mathfrak{h}$. Dans les notations de la définition qui suit le lemme 0.5, soit $Z(\mathfrak{u},\mathfrak{v},\mathfrak{w})$ le système de tous les $I^0 - K - (w)$ avec $w \in Z \subset W$. Soit \mathfrak{D}_0 un système pseudocomplet dénombrable de \mathfrak{D}_0 dans l'espace I_0 . Soit $\mathfrak{u} = \mathfrak{z}, \ \mathfrak{v} = \mathfrak{k}_0, \ \mathfrak{w} = \mathfrak{h}$. L'ensemble Z soit choisi de façon que sa puissance \mathfrak{x} soit $>\mathfrak{z}$. Le système de tous les $O_0 (+) \{O_1 (\times) I_2\}$ avec $O_0 \in \mathfrak{D}_0$, $O_1 \in Z(\mathfrak{u},\mathfrak{v},\mathfrak{w})$ est un système pseudocomplet d'entourages de \mathfrak{D}_0 dans l'espace I^1 . Mais, évidemment, il ne contient aucun système pseudocomplet de puissance \mathfrak{z} . On en tire la propriété suivante de l'espace:

Soit $\mathfrak{z} < \mathfrak{x} \leq \mathfrak{h}$. Pour tout point p de N^1 , il existe un système pseudocomplet d'entourages dans N^1 du point p qui ne contient aucun sous-système pseudocomplet de puissance $\mathfrak{z} = \psi_0(N^1)$.

L'hypothèse que $\mathfrak{z} < \mathfrak{h}$ est essentielle. En effet, soit E un espace aux points fermés, $\mathfrak{p}(E) = \mathfrak{h}$. Soit \mathfrak{D} un système pseudocomplet d'entourages de p dans E. A chaque $e \in E - (p)$, faisons correspondre un $O_e \in \mathfrak{D}$ avec $e \in E - O_e$. Les O_e parcourent un système pseudocomplet de puissance $\leq \mathfrak{h}$ d'entourages de p dans E.

Si l'on se borne à l'étude des espaces où les caractères des points ne surpassent pas la puissance de l'espace, on peut supprimer I_0 dans la définition de I^1 et I'_0 dans celle de $I^{(1)}$, c'est à dire, on considère I_1 (×) I_2 au lieu de I^1 etc. Toutes les propositions données plus haut restent vraies dans ce domaine d'espaces et, de plus, tous les espaces en question sont du type L de Fréchet en vertu du lemme 0.7. Notre espace N^1 du théorème 1 contient toujours un tel espace du type L ayant la puissance, les caractères et pseudo-

³⁾ Sur la puissance d'un espace contenant une partie dense de puissance donnée, Casopis 67 (1938), 89—96.

caractères des points donnés (d'une façon quelconque admissible a priori) et qui contient un sous-ensemble fini quelconque de N^1 donné d'avance.

- II. La fermeture dans l'espace E d'un M sera désignée par \overline{M} . Soit $M \subset E$; je désigne par M^* l'ensemble-somme des fermetures \overline{m} dans E de tous les (m) avec $m \in M$.
- 2. Soit E un espace qui satisfait à l'axiome C de Hausdorff; soit $A \subset E$, $M \subset E$, $AM^* = \emptyset$, $A\overline{M} \neq \emptyset$. Alors, on a $\omega_E(A) \leq \mathfrak{p}(M)$. Alors, E étant du type L, on a $\omega_E(A) \leq \mathfrak{r}_0$.

En effet, $E - M^*$ est la partie commune des entourages $E - \overline{m}$ ($m \in M$) de A en nombre $\leq \mathfrak{p}(M)$. Si l'on avait un U ouvert avec $A \subset U \subset E - M^*$, on aurait $M^* \subset E - U$, alors $\overline{M} = \overline{M}^* \subset C - \overline{U} = E - U \subset E - A$, d'où l'on tire la relation impossible $A\overline{M} = \emptyset$.

3. Lorsque l'espace E satisfait à l'axiome B de Hausdorff, chaque quasicaractère $\omega_E(A)$ est ou bien = 1 ou bien un aleph régulier.

Cela résulte du fait que je vais prouver, que, dans tout espace, les quasicaractères infinis sont réguliers. Pour le prouver, soit $\mathfrak U$ un système quasicomplet d'entourages de l'ensemble A dans l'espace E; $\mathfrak p(\mathfrak U)=\omega_E(A)=\mathfrak o$. Si $\mathfrak o$ était irrégulier, il y aurait de tels $\mathfrak U_\iota\subset\mathfrak U$ en un nombre $<\mathfrak o$ que $\mathfrak U=\sum_\iota \mathfrak U_\iota$ et que $\mathfrak p(\mathfrak U_\iota)<\mathfrak o$. Alors, par définition de $\mathfrak o$, l'ensemble ΠV ($V\in\mathfrak U_\iota$) contiendrait un entourage U_ι de A dans E. De même, $\prod_\iota U_\iota$ contiendrait un entourage U de A dans E qui serait un sous-ensemble de ΠV ($V\in\mathfrak U$) ce qui contredit à l'hypothèse que l'on a faite sur $\mathfrak U$.

D'autre part, tout aleph régulier peut être un $\omega_E(p)$:

4. Soit \mathfrak{u}_1 , \mathfrak{v} et \mathfrak{u}_2 , \mathfrak{v} deux couples réguliers, $\mathfrak{v} \leq \mathfrak{u}_2 \leq \mathfrak{u}_1 \leq \mathfrak{w}$. Dans ces hypothèses, il existe un espace N^4 de puissance \mathfrak{w} avec $\mathfrak{u}_1 \leq \chi(N^4) \leq (\mathfrak{u}_1/\mathfrak{v}), \ \psi(N^4) = \mathfrak{u}_2, \ \omega(N^4) = \mathfrak{v}$.

En effet, on peut poser $I^4 = I(\mathfrak{u}_1, \mathfrak{v}, \mathfrak{w})$ (\times) $I(\mathfrak{u}_2, \mathfrak{v}, \mathfrak{w})$.

Les caractères et les pseudocaractères dans un sous-espace ne peuvent pas surpasser ceux dans l'espace tout entier. Une proposition analogue pour les quasicaractères serait en défaut:

5. Soit $\mathfrak{m} > \mathfrak{p}$, $\mathfrak{m} > \mathfrak{q}$, $\mathfrak{p} \subseteq \mathfrak{q}$. Lorsque les alephs \mathfrak{p} et \mathfrak{q} sont réguliers, il existe un espace N^5 de puissance \mathfrak{m} avec $\omega_0(N^5) = \mathfrak{m}$ et tel que, pour tout \mathfrak{m}' [$\mathfrak{q} < \mathfrak{m}' \subseteq \mathfrak{m}$] et tout sous-ensemble fini F de N^5 , il existe un sous-espace Q de N^5 avec $\mathfrak{p}(Q) = \mathfrak{m}'$, $\omega_0(Q) = \mathfrak{q}$, $F \subset Q$.

En effet, soit $I^5=I(\mathfrak{m},\mathfrak{p},\mathfrak{m})$ (\times) $I(\mathfrak{m},\mathfrak{q},\mathfrak{m})$. On n'a qu'à poser $Q=N^{p}$, I^{p} étant un sous-espace de I^5 homéomorphe à