Werk Label: Article **PURL:** https://resolver.sub.uni-goettingen.de/purl?31311028X_0067 | log45 ## **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen ## On the question of the possible rotation of the local cluster. J. M. Mohr, Praha. (Received October 8, 1937.) Dedicated to Professor František Nušl on the occasion of his seventieth anniversary December 3, 1937. On the base of the study of the space velocities of 910 stars of B type the author shows that the suplementary rotation of the so-called local cluster about a centre situated at $l=237^{\rm o}$ in the constellation of Carina in a distance of some hundred parsecs only does not exist. In my previous work¹) I gave new observational evidence of the galactic rotation. But H. Mineur showed²) that my demonstration did not settle the question of the possible sub-rotation about the second centre, i. e. the centre of the local cluster, which must be placed some hundred parsecs only from the Sun in the direction of gal. longitude $l=237^{\circ}$. I have shown in a comment on a paper by Edmondson,³) that this question may be solved by studying the motions of stars, which are placed in belts of space oriented towards gal. longitudes $l=147^{\circ}$ and $l=327^{\circ}$. I also mentioned, that I would return to this subject. Consider a system of coordinates X, Y in the galactic plane, the origin being the Sun. The axes X, Y are oriented in the usual sense. Let V_{\odot} denote the instantaneous rotational velocity of the Sun, V_{\bullet} the mean rotational motion of the stars in the solar vicinity, and V_{\bullet} the velocity of these stars relative to the Sun. If we take a new system of coordinates X', Y' in which Y' is in the direction of V_{\bullet} then X' is directed to the galactic centre, i. e. approximately to $l=327^{\circ}$. By this supposition we obtain the following relations: $$V_{\odot} \cos \alpha_{\odot} = V_{\bullet} + V_{\tau} \cos \beta$$ $$V_{\tau} \sin \beta = x'; V_{\tau} \cos \beta = y'$$ (1) ¹) J. M. Mohr, M. N. 92 (1932), 583. H. Mineur, Bull. astron., 7 (1934), 397. Edmonson, Astr. Journal, 44 (1935), No 1016, 16. where β is the angular distance between the Apex and the point towards which the mean rotational motion of the stars is directed, and α_{\odot} ist the angle between the direction of the rotational motion of the Sun and the direction of the mean rotational motion of the stars. It is also easy to see that following relations must exist: $$V_{r^{2}} = x^{2} + y^{2},$$ $$x' = x \cos \alpha' - y \sin \alpha',$$ $$y' = x \sin \alpha' + y \cos \alpha',$$ $$\alpha' = 360^{\circ} - 327^{\circ} = 33^{\circ}.$$ (2) where From my previous discussion of B stars,4) which I use also in this paper, it resulted that $$V_r = 19.12 \text{ kmsec}^{-1}$$. If we accept the value $V_{\odot}=300~{\rm kmsec^{-1}}, {\rm towards}~l_{\odot}=55^{\circ}$ then $V_s = 284,88 \text{ kmsec}^{-1}$, towards $l_s = 56^{\circ} 54' 24,7''$. If as H. Mineur supposes, a secondary rotation does exist (i. e. if there does exist a second centre of rotation in the direction $l=237^{\circ}$ distant only a few hundred parsecs from the Sun), then for stars, whose coordinates of positions Y' are less than zero, this rotation must be seen in the x' (components of their space velocities). Besides the vector V_1 of the fundamental rotation, there must be present also the vector V_2 of the second rotation, so that the resultant of both vectors in different positions of space must be different in magnitude and in the direction. Let V_1 denote the vectors of the fundamental rotation. The centre of this rotation is placed in the direction $l=327^{\circ}$. V_2 are the vectors of the possible suplementary rotation about $l=237^{\circ}$ for the group of stars with Y' < 0. The resultant motion of stars in the group I. of stars is V_s' , in the group II. V_s'' and in the group III. V_s''' . The angle between the vectors V_1 and V_s' is α'_1 , between the vectors V_1 and V_s'' ist α'_2 , etc. Denote moreover by V_{\odot} the instantaneous velocity of the Sun, which is compounded also from the vector of the fundamental rotation and the vector of sub-rotation for Y'=0. (This latter vector is sensibly smaller than in the space where Y' < 0. For Y' = 0, i. e. in the vicinity of the Sun, we get $$V_{\odot} \sin \alpha_{\odot} + V_{\bullet} \sin \alpha_{\circ} = x'$$ $V_{\odot} \sin \alpha_{\odot} + V_{s} \sin \alpha_{2} = x',$ where α_{2} is the angle between the vectors V_{1} and V_{s} . But for Y' < 0 we get similarly $$V_{\odot} \sin \alpha_{\odot} + V''_{s} \sin \alpha'_{2} = x'_{2}$$ ⁴⁾ Publ. de l'Institut Astron. de l'Université Charles de Prague, No. 19, and $$V_{\odot} \sin \alpha_{\odot} + V'_{s} \sin \alpha'_{1} = x'_{1};$$ $V_{\odot} \sin \alpha_{\odot} + V'''_{s} \sin \alpha'_{3} = x'_{3},$ where $\alpha'_{1} \leq \alpha'_{2} \leq \alpha'_{3}$ and $V'_{s} \leq V''_{s} \leq V'''_{s}$ either if the group I. is one of groups of stars situated in positive X' and the group III. in negative X', or vice versa. But if the groups I. and III. of stars are at the same distance from the axis Y', so that $$|X'_1| = |X'_3|,$$ then the ratio of the change of α'_1 compared with α'_3 and of V'_s to V'''_s is given by the relation $$\frac{V'_s}{V'''_s} = \frac{\sin \alpha'_3}{\sin \alpha'_1}$$ so that $$x'_{1} = x'_{3} > x'_{2}, (3)$$ because the components x'_1, x'_2, x'_3 are negative. If we suppose for simplicity that the vector of the fundamental rotations is independent of X' (this supposition may be made owing to the great distance of the centre of rotation), then considering groups of stars placed in Y' < 0, the component x' of the space velocity for X' = 0 must reach a maximum negative value. For values $X' \geq 0$ this component x' must gradually reach lower negative values. The values x'_1 , x'_2 , x'_3 are easily obtainable if we know the components x, y, z of space velocities of the stars as shown by formulas (1) and (2). But how is realised the inequality (3) by the computation? If we divide the space round the Sun in three parts so, that the first part contain all stars, which Y'>+150 parsecs, the second part contain all stars, which $Y'=\pm 150$ parsecs, the third part contain all stars, which Y'<-150 parsecs, then the computed values of x' for different X' are given in Table I. Table I. Y' > + 150 parsecs. | X' (parsec) | 502,66 | 147,81 | 49,59 | + 50,48 | +189,00 | +419,16 | |---------------------------|---------|---------|---------|---------|---------|---------| | Y' (parsec) | +379,03 | +344,31 | +302,27 | +284,98 | +364,84 | +393,96 | | x' (kmsec ⁻¹) | + 2,31 | + 5,39 | + 3,41 | + 3,48 | + 3,03 | + 17,08 | | Number of stars | 17 | 39 | 32 | 37 | 27 | 5! | | X' (parsec) | -427,71 | 168,90 | -47,98 | +50,56 | +155,00 | +362,48 | |---------------------------|---------|---------|--------|--------|---------|--------------| | Y' (parsec) | - 7,64 | - 19,12 | - 5,14 | -36,30 | - 21,06 | 75,20 | | x' (kmsec ⁻¹) | - 13,70 | 11,12 | -12,12 | - 8,55 | - 9,53 | - 14,08 | | Number of
stars | 24 | 122 | 167 | 204 | 103 | . 81 | Y' < -150 parsecs. | X' (parsecs) | -491,00 | -178,45 | - 36,08 | + 45,34 | +175,67 | +337,30 | |---------------------------|---------|---------|---------|---------|---------|---------| | Y' (parsecs) | 265,05 | | | | -250,61 | | | x' (kmsec ⁻¹) | 28,00 | - 15,51 | — 11,80 | - 11,67 | - 50,00 | - 44;63 | | Number of
stars | 16 | 28 | 46 | 25 | 7 | 3 | The Table I. shows, that x' remains nearly constant in the groups where Y'>+150 parsecs and $Y'=\pm150$ parsecs. The dependence of the x' on X' in the group Y'<-150 parsecs does not show in the suplementary rotation about the centre $l=237^{\circ}$. Although there are a smaller number of stars in this group, especially for large positive X', it can be seen, from the values x' between X'=-491,00 parsecs and X'=+45,34, where we find a homogeneous number of stars, that the behaviour of the values x' is just in the opposite sense to that which would be, if the suplementary rotation did exist. This ascertained distribution of the components x' in various parts of space has of course a great significance for, for instance, the K term. Because the distribution of the components x' in the parts of space, the Y' of which is Y'>+150 and $Y'=\pm 150$ parsecs, is regular, it is clear that we should have from this material of stars the possibility to obtain a value of the K term not affected by the perturbing influence of the star-streaming. In the space where Y'<-150 parsecs the observed dependence of x' on X' is probably caused not only by the rotation of the Galaxy but probably by the star-streaming. By this star-streaming the velocity-ellipsoids in those parts of space are deformed. Therefore if we would find the real value of the K term we must separate all deformations from the observed velocity-ellipsoids. I myself⁵) tried a case unreally, but for the time being important for the knowledge of the real velocity-ellipsoids in different parts of space in order to find in the future what is the real form of ⁵) J. M. Mohr, Publ. de l'Institut Astron. de l'Université Charles de Prague, No. 19. 1936.