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MEAN VALUE THEOREM AND LAGRANGE SETS
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L. HOLA, P. KOSTYRKO, B. J. POWELL and T. SALAT, Bratislava

0. Introduction

Let f: [a, b] = R (R — the real line, [a, b] = R) be a continuous function on
the interval [a, b] and differentiable on the interval (a, b). Then, according to
Lagrange’s mean value theorem ([13], p. 374, Theorem 3) there exists £€(a, b),
such that

J(8) = (1) — fl@)/(b — a).

In the connection with this fact a question can be raised to investigate some
properties of the set L(f) of all such reals &€ (a, b), that

18 = () =)y — x) (1)

where a < x < £ < y < b. These reals will be called the Lagrange numbers of the
function fand L(f) will be called the Lagrange set of . Analogously, let L*(f)
be the set of all such £e(a, b), that

S8 = () = fx)/(y — %) )

where a < x < y < b (without the assumption x < £ < y). These reals will be
called the generalized Lagrange numbers of f and L*(f) will be called the
generalized Lagrange set of f. Obviously L(f) = L*(f).

The notion of Lagrange’s numbers of the function fhas been motivated by
Problem 4 of [8], p. 323, according to which there are numbers &€ (a, b) such
that the expression of /(&) in the form (1) (¢ < x < £ < y < b), or in the form
(2) (a < x <y < b), isimpossible. Puta = —1,b = 1, f(x) = x’ for xe[—1, 1].
Then f’(x) = 3x?, and f”(0) = 0. Since the function fis increasing on the interval
[—1, 1], each ratio of the form (f(y) — f(x))/(y — x), a < x < y < b, is positive,
and we have 0¢ L*(f) (see [8], p. 323).

The present paper is devoted to the investigation of some properties of the
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sets L(f), L*(f) for certain classes of functions. The first part deals with the basic
properties of these sets. We will prove that L(f) = (a, b) whenever f” is mono-
tone. Some sufficient conditions will be given such than Int L(f) # 0 and
Int L*(f) # 0 Int A4 is the interior of A).

Further a class of functions f will be introduced, for which L*(f) is a
residual subset of (a, b). The second part of the paper is devoted to the study
of properties of sets L(f) for convex functions.

1. Basic properties of sets L(f) and L*(f)

First we show that the introduced inclusion L(f) = L*(f) which holds for
every function f continuous on [«, 4] and differentiable on (a, b) can be strict.

Example 1.1. Put f(x) = x> — x* for xe[—1, 0) and f(x) = x* — x> for
xe[0,1]. It is easy to see that 0e L*(f) — L(f).

We shall frequently use the following simple result concerning the sets L(f).

Proposition 1.1. Let f: [a, b)] - R be a continuous function on [a, b] and
differentiable on (a, ). Then L(f) is a dense set in (a, b).

Corollary 1.1. Let the assumptions of Proposition 1.1 be fulfilled. Then
L*(f) is a dense set in (a, b).

Proof of Proposition 1.1. Let (¢, d) = (a, b). According to Lagrange’s
theorem there exists £e(c, d) such that

S (&) =(d) — fle)/(d—¢).
Hence &e L(f), Ee(c, d) and (¢, d) n L(f) # 0.

Let f: I - R (I is an interval) be a continuous function. In the paper [3]
lower and upper bounds of the set of numbers of the form

() = FON/(y — %), x, yel, x <y

and lower and upper bounds of the Dini derivatives of the function f on 7 are
investigated. The following result (Lemma 1.1) concerns this theme. Put

E={(x,y)eR:asx<y=sb}

HA(x, ¥) = Hix, ) = (f() —f)/(y — %)

for (x, y)eE.
Note, that the function H;: E — R is continuous on E. Since E is connected,
H(E) is an interval (it can be degenerated).

The following lemma is an easy consequence of the Lagrange’s mean value
theorem.
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Lemma 1.1. Let the function f: [a, b] - R be continuous on [a, b] and
differentiable on (a, b). Then

J'(L()) = HAE). 3)

If " is a continuous function on (a, b), then the set L(f) is measurable with
a simple topological structure. This is shown by the following theorem.

Theorem 1.1. Let a function f: [a, b] — R be continuous on [a, b] and let f”
be continuous on (a, b). Then the set L(f) is an F-set in (a, b).

Proof. Put forevery ne N ={1,2,...} F, = {£€e(a, b): Ix, yela, b], x < <
<y &—x2l/ny—8&21/n f'(&) = (fy) — f(x)/(y — x)}

It is easy to verify that

LHn=U E, 4

and it is sufficient to show that each of sets F, ne N, is closed in (a, b). But it
can be shown in the standard manner.

Analogously we can verify the following statement

Theorem 1.2. Let a function f: [a, b)] - R be continuous on [a, b] and let f”
be continuous on (a, b). Then the set L*(f) is an F,-set in (a, b).

In the introduction it was shown that L(f) can be a proper subset of the
interval (a, b). The following statement gives simple conditions to the equality
L(f) = (a, b).

Theorem 1.3. Let - [a, b)] - R be continuous on [q, b] and differentiable on
(a, b). Let f” be monotone on (a, b). Then:

If /" is strictly increasing on (a, b), then for each ce(a, b), one of following
is true:

a) M =1"(c)
b—a

b) JM > f(¢)
b—a

in which case there exists a real number 8, b > > ¢ > a for which

B 1@ _ iy

B—a
©)
O =f@) _ s
—a
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in which case there exists a real number a, a < a < ¢ < b for which

f®) =f@) _
b—a

Proof. (a) There exist points ¢ in (a, b) for which]%mﬂa2 = f'(c), by the

Mean Value Theorem.

—da

(b) Since f” is strictly increasing on (a, b), fis convex on (a, b). The equation
of the line T(x) which intersects the point (a, f(a)) and which runs parallel to the

tangent line at (c, f(c)) is given by

T(x)=f"(c)(x —a) + fla)

(see picutre 1). By the convexity of f on (a, b), the line T(x) must intersect the
graph of f'at a unique point (S, f( B)), where ¢ < f# < b. Thus we have from (5)

T(B)=f(P)=f"()(B—a)+f(a)

hence

(a.f(a))

(c.flc))

I
I
|
|

~
\ \\\

f(ﬂ) _f(a) =f,(C)
p—a

(c) We proceed analogously as in (b).

(n.f(n)
. )

&)

(b.f(b))

a c
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An analogous result to (a), (b), (c) above applies symmetrically for f” strictly
decreasing on (a, b), i.e. f concave.

Theorem 1.3 has an immediate consequence:

Theorem 1.4 Let a function f: [a, ] = R be continuous on [a, b] and
differentiable on (a, b). Let the function f” be strictly monotonic on (a, b). Then
L(f) = (a, b).

Corollary 1.2 (Lagrange sets for integrals) Let a function f: [a, b)] > R be
continuous on [a, b] and either monotonic on (a, b) or constant on (a, b). Let

F(x) = f "fDdt, a < x < b. Then L(F) = (a, b).

Theorem 1.4 cannot be conversed. This is shown by the following example:
Let f(x) = x* for xe[—2, 5] and f(x) = x* + 16x + 20 for xe[—15, —2). Thus
f/(x) = 3x* for xe[—2, 5) and f(x) = 2x + 16 for xe(—15, —2). Note that f”
is strictly increasing on (— 15, —2), strictly decreasing on (—2, 0), and strictly
increasing on (0, 5). Note further that

f(=2)=12=((5) - f(-9))/14

and
£(0) =0 = (f/5) — f(—15)//5 + 15)

According to these equalities and Theorem 1.4 we have L(f) = (—15, 95).
But f” is evidently neither strictly monotonic not constant on (—15, 5).

We showed (Proposition 1.1) that the set L(f) is dense in (a, b). In connec-
tion with this fact the question arises how “‘rich” is the set (a, b)) — L*(f). The
following theorem shows that this set can be extremely rich from a topological
point of view.

Theorem 1.5. There exists such a function g: [a, b] — R, continuous on [a, b]
and differentiable on (a, b), that the set (a, b) — L*(g) is residual in (a, b) (i.e.
its complement L*(g) is a set of the first Baire category in (a, b)).

Corollary 1.3. There is such a function g that each of the sets L(g), L*(g)
is a first Baire category set in (a, b).

Proof of Theorem 1.5. We will use a construction due to S. Marcus (see [1],
the proof of Theorem 8, [2], p. 33).

Let4,>0(n=1,2,...)and ) 4,< +o.Leta, B,eR, a < Bandlet{q,,

n=1

a,, ..., a,} be a countable set dense in [a, §]. Put for xe[a, f]

Fo)= Y Ayx—a)P ©)

n=1

Then F is clearly continuous and strictly increasing on the interval [a, f].
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In the paper [11] it is proved:
a) The function F has the finite positive derivative at each point x€[a, fl,
x#a,(n=1,2,...), whenever the series

S AJx— a2 )

n=1
is convergent.

b) The equality F'(x) = -+ oo holds at each point xe[a, f], x # a, (n =1,
2,...), whenever the series (7) is divergent. ‘

c)F’(a,) = + o holds foreveryn =1, 2, ....

Since the function Fis strictly increasing and continuous on [a, f], (see (6))
there exists G = F~' (the inverse function of F) defined on the interval [4, B],
where A = F(a), B = F(p). The function G is continuous and strictly increasing
on [A4, B].

The properties a) —c) of F’ and the theorem on the derivative of an inverse
function imply that the function G has a finite derivative at each 1€ (4, B) and
that G'(t,) = 0 holds for each ¢, = F(a,) (n = 1, 2,...), where the set {¢,, t,, ...,
t,, ...} is dense in [4, B]. Since G is a strictly increasing function, the set of all
such points ¢ at which G’(¢) > 0 is also dense in [A4, B].

Hence we have constructed such a function on the interval [4, B], which is
continuous, strictly increasing and differentiable on (A4, B) and the set
{t:G’(¢t) = 0} and its complement are dense sets in (4, B).

Let ¢: [a, b] - [4, B] be a homeomorphic map of the form

ot)y=(—a).(B—a)/(b—a)+ A.

Define the function g: [a,, b] = R by g(t) = G(¢(?)).

It is easy to verify that the function g is strictly increasing and continuous
on [a, b], differentiable on (a, b), and both the set Z, = {xe(a, b): g’(x) = 0} and
its complement are dense sets in (a, b).

The function g is strictly increasing on [a, b] and every number of the form
(g(y) — g(x))/(y — x), a < x <y < b, is positive, hence

Z, < (a, b) — L*(g). (8)

Since g’ is a Baire one function ([4], [10], [14], p.81) Z, = ¢g'~' ({0}) is a
G;-set in (a, b), hence Z,. is residual in (a, b) ([9], p.49). According to (8)
(a, b) — L*(g) is a residual set in (a, b).

Theorem 1.5 shows that the interior of the set L*(g) is void. Further some
sufficient conditions, concerning f”, will be given, such that Int L(f) # 0 (or
Int L*(f) # 0).

Recall the notion of quasicontinuity and somewhat continuity of a function

(see [7], [5D-
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Let X and Y be topological spaces. A function g: X' — Y is said to be
quasicontinuous at x € X if for each neighbourhood V = V(g(x)) of g(x)e Y and
each neighbourhood U = U(x) of x € X there is a non-void open set G — U such
that g(G) = V. A function g is said to be quasicontinuous on X, if it is quasicon-
tinuous at each xe X.

A function g: X — Y is said to be somewhat continuous (on X), if for any
open set G < Y the condition g~'(G) # 0 implies Intg ~'(G) # 0.

The quasicontinuity of g: X — Y implies its somewhatcontinuity. The in-
verse statement does not hold. If X is a real interval and Y = R, then there is
a somewhat continuous function g: X — R that g is quasicontinuous at no point
x€e X (see [15]).

Theorem 1.6. Let a function f: [a, b] — R be continuous on [a, b] and let [
be quasicontinuous on (a, bj. Then Int L(f) # 0.

Proof. If there is an open interval I < (a, b) such that f” is constant on /, then
L(f) = I and the statement holds.

Further we shall suppose that f” is constant at no open interval.

Choose & e L(f). It follows from the definition of L(f) that there are x,, yq,
a < xy< & <y, < b, such that

S (&) = (F(yo — f(xo))/(¥o — Xo)-
We show that there are numbers x, y such that

Xo<x<&<y<y 9)
and

S(8) # (F(y) = SN/ (y = x).

Suppose, by the contradiction, that for every x and y fulfilling (9) we have
(&) = (f(y) = f(x)/(y — x).

Fix y,e€(&, yy)- Then for each xe(x,, &) we have

F(&) = (f(y) = )/ (yy — x),
hence
Sx) =f(y) = (&) () — x).

The differentiation with respect to x gives f'(x) = /(&) for each x € (x,, &)).
This is a contradiction with the assumption, that f” is constant at no open
interval. Hence it is possible to choose x and y such that the inequalities (9) and

S(G0) # () = SO/ (y — x)

are fulfilled. Then, according to the Lagrange theorem for a suitable & e(x, y),
we have

() =SOCN(y —x)=f(&).
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Put B = [x,, x] x [y, yo]. The set B = E is compact and connected, and the
function H,is continuous on B. Therefore H/{B) is a bounded closed interval
containing different points /(&) and f”(&,).

Suppose (&) < f (&) (f (&) < f(&) the proof is analogical). Since the
function /" has the Darboux property, it gains on the interval J (with endpoints
& and ¢)) all values between f(&)) and f"(&,). Choose ce(f'(&), £(&,)). Then
there is a de J such that f’(d) = ¢ and obviously f’(d) € Int H{B).

Since f” is quasicontinuous at d, there exists a non-void open set
U c J < (x, y) such that f(U) < Int H(B). For each ze U there are numbers s
and ¢, se[x,, x], t€[y, yol, such that f'(z) = (f(t) — f(s))/(t — s). Hence we have
s x<z<y<=tand zeL(f). Therefore U = L(f) and the theorem is proved.

The next theorem is a simple consequence of the above theorem.

Theorem 1.7. Let a function f: [a, b] > R be continuous and let f/* be
quasicontinuous on (a, b). Then the set (a, b)) — L(f) is nowhere dense in (a, b).

Proof. Let 7 be an open interval, / < (a, b). Then f is quasicontinuous
on /. It follows from Theorem 1.6. that there is an open interval I’ < I such that
I’ < Int L(f).

The statement is an easy consequence of a well-known characterization of
nowhere dense sets ([9], p. 37).

Corollary 1.4. Let a function f: [a, b)] —» R be continuous on [a, b] and let f*
be (R) — integrable on every closed interval J < (a, b). Then the set (a, b) — L(f)
is nowhere dense in (a, b).

Proof. The integrability of f” on every closed subinterval of (a, b) implies
that f” is quasicontinuous on (g, b) ([12]). The statement follows from Theorem
1.7.

In connection with Theorem 1.7 we shall construct a function f continuous
on [a, b], differentiable on (a, b) and such, that the set (a, b)) — L*(f) is both
nowhere dense and infinite.

Example 1.2. Choose @, feR, a<f. Let 4,>0(n=1,2,..), Y 4,<
n=1

< 4. Letge(a, p)(k=1,2,..),a,>a,... >a,> ..., a. - a. Put

Fx) = ¥ A,(x —a,)"

n=1
for xe[a, f]. Using the method of the proof of Theorem 1.5 we can verify that

the function F is strictly increasing and continuous on [a, f], further F has at
every x #a, (n =1, 2,...) a finite derivative F’(x) and

F'(x)=3"". i A,/(x — a,)?

n=1

and F'(a,) = +00 (n=1,2,...).
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Put 4 = F(a), B= F(B). Then A < B. If G = F~', then G is strictly increa-
sing and continuous on the interval [4, B]. Putt, = F(a,) (n =1, 2,...). Then G
has a finite positive derivative at each ye(4, B), y#1t, (n=1, 2, ...) and
G'(t,)=0(m=1,2,..). Obviously 1, > 4, t, > t,> ... > 1, > ....

Note that for xe(4, B), x #t,(n =1, 2,...) we have

|x —a,|”* £ (B— a)? n=1,2..)

and

F(x)23'(B—a)*. Y 4,=D>0
n=1
This implies, using the theorem on the derivative of an inverse function,
that for te(4, B), t#1t, (n=1, 2,...) we have G'(t) < 1/D < + 0. Since
G'(t,)=0(=1,2,...), G’ is bounded on (4, B). )
We prove that G’ is continuous at each t # 1, (n =1, 2,...). Let t, #t,
(n=1,2,...)and t, = F(x,). Since a, > a, > ..., a, — a, there exists n > 0 such
that |a, — x,| = 27 for every k = 1, 2, .... Then the series

3 Y A (x=a)’  (=F(x)
n=1
converges uniformly on the interval I = (x, — 1, x, + 7) (this follows from the
the Weierstrass M-test) and its sum, i.e. the function F”’ is continuous at X,. This
implies the continuity of G’ at ¢,. Put

p()=((t-a)/(b—a).(B—A)+A4  (t€[a, b))

and define g(¢) = G((?)) (t€[a, b)).

It is easy to verify that the function g is continuous and strictly increasing
on the interval [a, 4], that the function g’ is continuous on (a, b), perhaps with
the exception of points ¢(z,) (n = 1, 2, ...), and that g’ is bounded on (a, b). This
implies (R) — integrability of g’ on [a, b] and the set (a, b) — L(g) is nowhere
dense in (a, b) (see Corollary 1).

For points u, = ¢~'(z,) (n=1, 2,...) we have u,c[a, b], u, > u, > ...,
u,—>aand g(u,) = G(t,) =0(n=1,2,...). Since g is strictly increasing, we have
u,¢ L*(g). Hence (a, b) — L*(g) contains points u,(n=1,2,...) and (a, b) —
— L*(g) is an infinite nowhere dense subset of (a, b).

The non-voidness of Int L*(f) can be proved under a weaker condition than
the quasicontinuity of f”. This is shown in the next theorem.

Theorem 1.8. Let a function f: [a, b] - R be continuous on [a, b] and let f~
be somewhat continuous on (a, 4). Then Int L*(f) # 0.

Proof. If H(E) = {4}, then for a suitable Be R we have f(t) = At + B for
t€la, b]. Obviously L*(f) = (a, b) and the statement is in this case valid.
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Let H/(E) be a non-degenerate interval. Then Int H(E) # 0. Choose x, < y,
such that

() = f(x)) [ (y) = x)) e Int H(E)

Then there exists a & €(x,, y,) such that

S (&) = () —f(x))/(y, — x;)€lnt Hf(E)

i.e. /7' (Int H(E)) is a non-void set. It follows from somewhat continuity of f
that there is an open interval J; (J; # 0) such that J < f"~' (Int H/(E)). From
this we have J, ¢ L*(f) and the theorem follows.

Remark 1.1 We proved Theorem 1.7 as a simple consequence of Theo-
rem 1.6. One can conjecture that using Theorem 1.8 the following statement can
be proved:

(V) If a function f: [a, b] - R is continuous on [a, b] and f is somewhat
continuous on (a, b), then the set (a, b) — L*(f) is nowhere dense in (a, b).

We shall show that this idea is false. Indeed, the quasicontinuity of f” on
(a,b) implies quasicontinuity of f on every open interval / c (a, b). This
property is not implied by somewhat continuity. We shall show it in the
following example.

Example 1.3 We shall construct a derivative which is somewhat continuous
on (—1, 1) and it is not somewhat continuous on (0, 1).

Let H be the function constructed in the paper [6]. For every xe(0, 1) we
have —1 < H’(x) < | and each of the sets {xe (0, 1): H’(x) > 0}, {xe(0, 1):
H’(x) < 0} is dense in (0, 1). We can also suppose that H(0) = 0 and H'(0) = 0.
We now construct a function f on the interval [— 1, 0] in such a way that it is
continuous, f(—1) = 1, f(—1/2) = 0,/(0) = 0 and f(—1/4) = — 1 and it is linear
on each of the intervals [—1, —1/2], [—1/2, —1/4] and [—1/4, 0]. Put F(x)=

= ’ f(1) dt for xe(—1, 0]. Then obviously F(0) =0, F’(0) = 0 (= £(0)).
=

Define the function G: (—1, 1) - R in the following way: G(x) = F(x) for
—1<x=0, G(x) =H(x) for 0 <x < 1. Obviously G(0) = F(0)=0 and
gx)=G'(x) =f(x) for —1 <x =<0, g(x)=G'(x) = H(x) for 0 < x < | and
—1 = g(x) = 1 for every xe(—1, I). The function g is continuous on (—1, 0]
and it takes on every value from the interval [— 1, 1]. Consequently the function
g = G’ is somewhat continuous on (— 1, 1). But it is not somewhat continuous
on (0, 1). This follows from the fact that g|(0, 1) = H’, H ~'((0, 1)) # 0 and
Int H ~'((0, 1)) = 0 because the set {xe(0, 1): H'(x) < 0} is dense in (0, 1).

Using Theorem 1.8 we can prove the following result, which is weaker than
the statement (V).

Theorem 1.9 Let the function f: [a, b] — R be continuous on [a, 4] and let

86



f11 be somewhat continuous for every open interval I = (a, b). Then the set
(a, b) — L*(f) is nowhere dense in (a, b).

Proof of Theorem 1.9 is analogical to the proof of Theorem 1.7 therefore
can be omitted.

In what follows we shall give another condition for Int L*(f) # 0.

Theorem 1.10 Let a function f: [a, ] = R be continuous on [a, b] and let f”
be continuous almost everywhere in (a, ). Then Int L*(f) # 0.

Proof. If H(E) is a singleton, then L*(f) = (a, b) and the assertion holds
(see the proof of Theorem 1.8).

Further we can suppose that H/(E) is a non-degenerate interval. Let x,
ve H(E), u <v, hence (u, v) = H(E). Put B={xe(a, b): u<f(x) <v}=
= f"~'((u, v)). It follows from Lemma 1.1 that f"(L(f)) = H{E) and

(u, v) = H{E) = " (L(/)) . (10)

Choose 1, € (u, v). Then (see (10)) there exists & e L(f) such that 7, = " (&).
Hence & e/ ' ((u, v)), /' ((u, v)) # 0. It follows from the Denjoy’s property of
the derivative (see [4]) that A(B) > 0 (1 — the Lebesgue measure on the real
line). According to the assumption, there is a continuity point x, of f” such that
X, € B. Hence f”(x,)e (1, v) and f” is continuous at x,. Consequently there exists
a neighbourhood U of x, such that f"(U) < (u, v) « H{E) and for each {€ U the
number f”(£) has the form

S (&) = (f(y) —fix)/(y — x), asx<ysb

So we have U < L*(f) and Int L*(f) # 0.

From Theorem 1.10 we get

Theorem 1.11 Let f: [a, b] — R be continuous on [a, b] and let /* be almost
everywhere continuous in (a, b). Then the set (a, b)) — L*(f) is nowhere dense in
(a, b).

2. Lagrange’s sets of convex functions

In this part of the paper let (a, b) stand for an open real interval, — oo <
<a<b< +0o0. In the introduction Lagrange’s sets have been defined for
functions continuous on the compact interval [a, b] and differentiable on (a, b).
This definition can be formulated, in a natural way, also for functions defined
on (a, b), —o0 < a < b < +o0. Note, that for such functions, the assertion of
Proposition 1.1 concerning of the density of the set L(f) in (a, b), is valid (and
L(f) = L*(f)).

Recall some basic notions of the theory of convex functions.
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Definition 2.1 A function g: (a, b) — R is said to be strictly convex on (a, b),
if for every two points x, ye(a, b), x < y,

glsx + (1 —s)y) <sg(x)+ (1 —s5)g(y)

holds for each s, 0 < s < 1 (see [1], p. 57).

A strictly concave function is defined analogously.

Remark 2.1 Elementary properties of strictly convex functions are given
in [1], pp. 54 —69. In the sequel we shall use the following characterizations of
strictly convex functions

a) A function g is strictly convex on (q, b) if and only if the function ¢(x,
y) = (g(y) — g(x))/(y — x) (x # p) is strictly increasing at each of its arguments
x and y,

b) If g is differentiable on (a, b), then g is strictly convex on (a, b) if and only
if g’ is strictly increasing on (a, b) (and, since g’ has the Darboux property, it
is continuous on (a, b)). Moreover, the convexity of g implies its continuity and
continuity of every function

0.(x) = o(x, y), 0.(») = o(x, »)

¢) If the second derivative of a function g is finite on (a, b), then g is strictly
convex (concave) on (a, b) if and only if g” > 0 on (a, b) and the set {xe (a, b):
g"(x) > 0} is dense in (a, b) (if g” < 0 on (a, b) and the set {xe(a, b): g"x) < 0}
is dense in (a, b)).

The following statement is a consequence of Theorem 1.4.

Theorem 2.1. Let f be strictly concave differentiable on (a, b). Then
L(f) = (a, b).

Corollary 2.1. Let f be strictly concave differentiable on (a, b). Then
L(f) = (a, b).

Proof. It is sufficient to apply Theorem 2.1. to the function g = —f.

Corollary 2.2. Let P be a polynomial. Then the set L(P) contains all but a
finite number of points from (a, b).

Proof. If P is a linear or quadratic polynomial, then obviously L(P) =
= (a, b). Suppose deg{(P) > 2. Then P" is a polynomial of degree at least one.
Hence the set

K = {xe(a, b): P"(x) = 0} is finite. Obviously

(a,b)—K=OIj. (11)

j=1

where [; (j =1, 2, ..., m) are mutually disjoint intervals and on each of them
either P” < 0, or P” > 0. It follows from the part c) of Remark 2.1 that P is on
I; either strictly convex, or strictly concave. According to Theorem 2.1 we have
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L L(P)(j=1,2, ..., m), hence

\JF<cL(p). (12)
j=1
Relations (11) and (12) imply that (a, b) — K = L(P), (a, b)) — L(P) < K and the
statement of the theorem follows.

The next statement is an easy consequence of Theorem 1.7 (see Re-
mark 1.1). ‘

Theorem 2.2. If the second derivative of a function f: (a, b) — R is con-
tinuous, then the set (a, b) — L(f) is nowhere dense in (a, b).

Further, let C* (0, 1) stand for the family of all such functions f: [0, 1] -> R,
that the second derivative f” is finite and continuous (in the endpoints 0 and 1
we suppose the one-sided differentiability). Put | g ||, = sup{|g(t)|: 0 <t < 1}
for ge C* (0, 1). The family C? (0, 1) can be endowed with the norm || /|| defined
by: )

WA= 1A+ 00+ 10

The family C? (0, 1) with the above introduced norm is a Banach space.

In the following we shall deal with the structure of the space C* (0, 1) from
the point of view of Lagrange’s sets of functions. We show that a typical
function in C? (0, 1) has its Lagrange’s set of the Lebesgue measure one.

First we shall state the following simple result.

Lemma 2.1. The family of all polynomials is dense in C? (0, 1).

The proof of Lemma 2.1. is an easy consequence of the Weierstrass Ap-
proximation Theorem.

Remark 2.2. It is easy to verify that the family of all polynomials of the
degree greater than 2 is also dense in C? (0, 1). Note, that for fe C* (0, 1) the set
L(f) is a F-set (and hence measurable) — see Theorem 1.1.

Theorem 2.3. The family % of all functions fe C? (0, 1) with A(L(f)) = 1 is
residual in the Banach space C? (0, 1).

Proof. Let 2 stand for the family of all polynomials of the degree greater
than 2. If Pe 2, then the set

K, = {xe[0, 1]: P"(x) = 0}

is finite and A(K,) = 0. It follows from the continuity of the polynomial P that
for every ne N there exists 17, = n,(P), 0 < n, < 1/n, such that for the closed set

Dp={x€l0, 1]: | P"(x)| < n,(P)}
we have

A(D;) < 1/n. (13)
Put &, = () (feC* (0, 1): | f— P| < n,(P)}.

Pe?
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Each of the sets .o/, is open and hence < = () <, is a G4-set containing
n=1
the set 2 (see Remark 2.2). Consequently .« is a Gs-set dense in C2(0, 1) and
hence residual in C? (0, 1) (see [9], p. 49).
Choose fe.o«/. Then fe .o, holds for each ne N. It follows from the defini-
tion of .o/, that there is a polynomial P of the degree greater than 2 such that

ILf = Pl < n,(P). (14)

Put M, =10, 1] — D,. Then M, is open and it is the set of all x€[0, 1]
fulfilling

[ P"(x)]| > 1,(P). (15)
The relation (13) implies
AMp)>1— 1/n. (16)

If x,€ M, then we have from (15) that either P”(x,) > 1,(P) or — P"(x,) >
> 1,(P). Suppose P"(x,) > n,(P) (if —P"(x,) > n,(P) we can proceed analo-
gously). Since P” is continuous at x,, there exists an open interval /, containing
X,, such that

P"(x) > n,(P) 17)

holds for every xel.
From (14) we have for every x€[0, 1]

If"(x) = P"(x)| < n,(P). (18)

Hence, relations (17) and (18) imply

S'(x) > P"(x) — n,(P) > 0 for every xeI. The function f11 is strictly con-
vex, I = L(f) and x,€ L(f).

We showed M, = L(f). According to (16) we have A(L(f) > A(M,) > 1 —
—1/n(n=1,2,..), and hence A(L(f)) = 1.

We have proved that A(L(f)) = 1 for every function fe.<Z. It follows from
the definition of # that & > .. Consequently % is a residual subset of
C?(0,1).

In connection with Theorem 2.3 one can raise a natural question if there is
a function fe C* (0, 1), such that A(L(f)) < 1. The following example gives an
affirmative answer to this question.

Example 2.1. Let 4 < [0, 1] be a nowhere dense set with A(A) > 0. Suppose
that 4 = [0, 1] — () 1,, where {I,}_, is a countable family of mutually disjoint

n=1

open intervals.
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Let g, be defined on the interval I, = (a,, b,) (n = 1, 2, ...) in the following
way:

q,(x) = x — a, for xe(a,, a, + (b, — a,) | 4),
g.(x) = —x + (b, + a,)/ 2 for xe{a, + (b,— a,) /4, b, — (b, — a,) /4],
and ¢,(x) = x — b, for xe(b, — (b, — a,)/ 4, b,).
Then J " gyt > 0'holds for-each wefa, b,] and J g,(t)dt = 0if and only if

a, n

x=a, orx=b,.
Define the function g: [0, 1] —» R in the following way:

g(x) =0 for xe A and g(x) = ¢q,(x) for xel, (n=1, 2,...).
Then the function p: [0, 1] - R, p(x) = f\-g(t) dt(xe[0, 1]) is nonnegative
on [0, 1] and p(x) = 0 if and only if xe 4, x 0= OQorx=1.
For the function P: [0, 1] — R, P(x) = f"p(t)dt (xe]0, 1]) we have P’'(x) =
0

= p(x) and P"(x) = g(x) (xe (0, 1)). Moreover, since A is nowhere dense, the
function P is strictly increasing and

(P(y) — P(x))/(y —x) >0
holds for every x, ye[0, 1], x < y. So we have
Ac[0,1]— L(P)
and
L(P)c [0, 1] — A.
Consequently A(L(P)) < 1.

Remark. The authors are thankful to Professor J. Smital for improving the
original form of the paper.
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PE3IOME
TEOPEMA O CPEAJHEM U MHOXECTBO JIATPAHXA
JENCTBUTEJIbHBIX ®YHKLIUN
JI. Tona, I1. Kocteipko, B. [Ix. [Taysen u T. lllanart, Bpatucnasa
Iycts f: [a, b] > R (R — BeluecTBeHHas npsMas, [a, b] = R) dyHkuus HenpepbiBHA Ha

otpe3ke [a, b] u nuddepennmpyema Ha uHTepBase (a, b). MHOXecTBOM Jlarpanxa oT GyHKUMH f
Ha3bIBACTCS HEMYCTOE MHOXKECTBO L(f) Bcex Tex &€ (a, b) mns KOTOpBIX

S =0 —fx)/(y — x)

ua<x<¢<y<b. B paboTe paccMaTpHBAIOTCA CBOHCTBA MHOXeCTBAa L(f) M HEKOTOPBIX ¢ro
060011EeHMH.

SUHRN .

VETA O STREDNEJ HODNOTE A LAGRANGEOVE MNOZINY REALNYCH FUNKCIi
L. Hol4, P. Kostyrko, B. J. Powell a T. Salat, Bratislava
Nech f: [a, b] = R (R — realna priamka, [a, b] = R) je funkcia spojita na intervale [a, b] a

diferencovatelna na intervale (a, b). Lagrangeovou mnoZinou funkcie f budeme nazyvat neprazdnu
mnozinu L(f) vsetkych tych £e(a, b) s vlastnostou

1) =) —fx)/(y — x),

kde a < x < £ < y < b. Praca je venovana Studiu vlastnosti mnoziny L(f) ako aj niektorych jej
zov$eobecneni.
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