#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1991
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59 | log7

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
LVII—LIX

ON A NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM

JOZEF FULIER, Nitra

1. Introduction

Boundary value problems for nonlinear differential systems of the second
order have been in the centre of interest for a long time and were studied in many
research works. One of the works to be mentioned here is the one performed by
N.G. de Bruijn [1] in which the author offered an existence proof for the solution
of a boundary value problem that arose in the work on gas discharges.

In the present paper the mentioned boundary value problem is studied in
a more general setting and the existence of a solution to such generalized
problem is established. It is worth noticing that boundary value problems of a
similar type are studied in papers [2], [3].

Suppose thata = 0, 5 =2 0, 1, > 0, 7= ¢, > 0 are given real numbers. The
following notation is used:

R =(—00, ), R, =0, w), a=%(a— 1), J, =1 x)

denotes the Bessel function of the first kind of order @ and y = y(a) denotes the

first positive zero of this function; C"(I) denotes the space of all functions which

are n times continuously differentiable on an interval I, C°(I) means continuity.
The pair (y,, y,) of functions y,, y,e C°([0, t,]) » C*((0, t))

has to satisfy
d’y, _ady, ( dy, d)’z)
A2y H (1, p, p 2, 22,
i Yis V2 gt
()

2
47 +é @, = y,H, (t, Yis Vas %, @),
dt dt
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d
() >0 0 L1 < 1), yi(t) =0, 7); 0) =0,

., (I
70) > 0, ya(to) = Tho, f«)) =0,

where the following conditions are always assumed:
(A)) H;: [0, 7] x R* > R (i = 1,2) are continuous
(A,) for each compact set [0, 7] xD where D = R* there exists a constant L > 0

such that

4
|z:H(t, 2y, 25, 23, 24) — Z;H(L, 2), 25, 3, Z,)|S L Z |z, — Z;
i=1

(i=1,2)

for any pairs of points (¢, z,, z,, 23, 24), (¢, Z,, Z,, Z3, Z4) €[0, 7] xD.

(A;) there exist continuous increasing and upper unbounded functions H{:
R, >R, (i,j=1,2) with H{"(0) = H;"(0) 2 ’r*, H{?(0) = H{"(0) = 0
such that the inequalities

H{"(z,) £ H\(t, z), 2,, 23, z4) < H{"(2y),
HI(Z)(ZI) S Hy(t, zy, 25, 23, 24) S Héz)(zl)

are fulfilled on the set [0, 7] x R2 x R>.

N —

By the transformation r = 4 2x, where 4 = H{"(0) = H{"(0) and

1 !
5 5 d
yl(t) = u(x), ,Vz(t) = U(x)’ At = To» AZ[O = 50’ —=
dx
o 1 1
A_lHI(A 2x’ Zy, 22’ AZZ}, A224) =f(x9 2y, 23, 23, 24)’
= 1 1
A—IHZ(A x, Zy, 2y, A223, A224) = g(x, zy, z;, 23, 24),
AT'H(2) — 1 =£(2), A'HP(2) = g(2) (i = 1, 2),
we get
W+ ax ' + f(x, u, v, u', v')u=0, (1.1)
v+ bx~ v —g(x, u, v, u, V) v =0, (1.2)
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u(x) >0 (0 = x < &), u(§) =0, w(0)=0,

(1.3)
U(O) > 0’ U(éo) = To» U,(O) =0.

It is evident that properties of the functions H,, H, given in assumptions
(A)), (A,) remain valid also for the functions f, g (except for interval [0, 7] that
is substituted by [0, 7,]). The assumption (A;) of f, g functions assumes the form

(Aj) inequalities

1 4+ £1(2)) £f(x, 21, 25, 23, 24) S 1 + f5(2)), (1.4)

8i(z) S g(x, z), 25, 23, 24) < g2(2)) (1.5)

hold on the set [0, 7] x R3 x R*> where f;, g;: R, — R are continuous increasing
and upper unbounded functions, f;(0) = g,(0) =0 (i =1, 2).
Finally, let £ and G, denote the inverse function of f; and of g;, respectively
(i=1,2). ;
For general positive values of &, and 7, the sufficient (neccesary) condition
for existence of a solution of the boundary value problem is

AL+ 2<&<y (I +LHm)] 2<&<p)

which reduces to

2 2
HI(0) < (1) <HP(n)  (HY(0) < (Z) < H{(ny)).
N )

2. The topological method

The solution of the given boundary value problem can be obtained N. G.
de Bruijns method used in [1]:

Let p and ¢ be real numbers, p > 0, ¢ = 0. We observe the solution of the
system (1.1), (1.2) with initial values

u(0) = p, v(0) = g, ¥’'(0) =0, v"(0) = 0. 2.1

G. P. Grizans, J. A. Klokov [4] proved a theorem on the existence of a
solution of certain initial value problems. We formulate the theorem in a special
case.

Theorem A ([4, p. 24]). Let x, > 0, k;,> —1, y,; (i = 1, 2) be real numbers
and let the functions 4;: [0, x,] x R*—> R (i = 1, 2) be continuous. Then the
problem
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" ki ’ ’
yi+;yi=hi(x’y’y)

yl(o) =yoi§ y,,(o) = 05 I= ls 29

where y = (y,, »,), has a solution y e C([0, %,]) n C*((0, X,]) for some %, € (0, x,).
Moreover, if the functions 4, (i = 1, 2) satisfies Lipschitz condition on a neigh-
bourhood U(r) of the point r = (0, y,(0), ¥,(0), 0,0), i.e. there exists a constant
L > 0 such that

4
Ihi(x’ Zys 235 23, 24) - hi(x’ Z-l’ 2—2’ “-;3, fa)' é L Z |Z, - Z_,'l-,
j=1
i =1, 2 for any pairs of points (x, z,, z,, z3, 24), (X, Z,, Z,, Z3, Z,) € U(r), then the
problem has exactly one solution and moreover this solution continuously
depends on the initial conditions.

Clearly the assumptions of Theorem A are satisfied by conditions (A4,) and
(A4,). From Theorem A it follows that the problem (1.1), (1.2), (2.1) has exactly
one solution on some interval [0, 7] (0 < 7, < 7,) and moreover this solution
continuously depends on the variables p, g.

For x increasing from 0 onwards as long as u > 0 by (1.5) we get (x"v") > 0
and then v increases (except for the case that v is identically zero), and u
decreases while ¥ > 0, v = 0. Since in this case we have (x“u’)’ < 0, so there is a
finite £ such that u(x) = 0 for the first time at x = £ (actually it follows from
Lemma 2 (see Sec. 3) that

ES YL+ fi(g)] 2

We define n by 17 = v(&). The numbers & and 7 (cf. Theorem A) are uniquely
determined by p and g (precisely: the point (£, 1) is uniquely determined by the
point (x(0), v(0), u’(0), v(0)) = (p, ¢, 0, 0)), and the region p >0, g =0 is
mapped continuously into the region £ > 0, n = 0.

Let us denote this continuous mapping by ®. This @ is vector-valued:

(b(p’ q) = (5’ 'l)

The point (¥, 0) clearly belongs to the range of ®. Indeed, for every p > 0
and g =0 the pair (45, v,) of the functions uy(x) = pI(a+ 1)2°%%~J(x),

1,(x) =0(0 = x £ y) (Whete a = % (a — 1), I'is the gamma function, J, = J,(x)

is the Bessel function and y is the first positive zero of this function) satisfies
(1.1), (1.2) and uy(x) — p for x > 0", v(0) = 0. Since y is the first positive zero
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of the function u, then n = vy(y) = 0i.e. ® (p, 0) = (7, 0) for every p > 0. For
all other solutions we have n > 0. Let &), 1, be positive numbers satisfying

AL+ £(n)] P< & <7

We shall show that (&), n,) belongs to the range of ® by means of the
winding method. We produce a closed curve in the (p, g) — domain and show
that its image under ® is a curve encircling the point (&), 1,). It follows that the
boundary value problem (1.1), (1.2), (1.3) has at least one solution. The contour
in the (p, q) — plane will be the rectangle D = {(p, 9)eR*: c<p < P,
0 < g < n,} shown in Fig. I. The number 7, can be any number greater than 7,.

q
E
I >
El Eu
0 & E, P p
Fig. 1

The number o has to be small, P has to be large. The image of E, = {(p, g)€ R*:
ospsP q=0; E={(p. PeR* p=0, 0=q=n)}, E={(p, 9eR"
ospsPg=mn}, E,={(p,geR:p=P 0=q= n}inthe (& n) — plane

is shown in Fig. 2. Note that if (p, ¢)+> (&, i) then a pair (u, v) of functions u,
vsatisfies (1.1), (1.2) and initial conditions u(0) = p, v(0) = ¢, u’(0) = 0,v’(0) = 0
has the property: u(x) > 0 (0 < x < &), u(€) =0, v(&) = n. The image of E, is
the single point (¥, 0). The image of E, closely resembles the part of the curve
n = F(y£%2—1), at least o is small. The image of E; is safely above the line
n = n,. The real difficulty lies in studying the image of E,. If £, is any number,
& < v (if & < y we can take care that & < &, < ¥) we can show that P can by
taken so large that the image of E, stays outside the rectangle with vertices (0, 0),
(0’ m)v (él’ 0)’ (5“ nl)

In Fig. 2 we have drawn (&, 1,) such that 0 < & < y, 7, > E(¥*&72 — 1). From
the situation shown in Fig. 2 it follows that index ci’r;d (&, 1) of the point (&,,

@D)

1) relative to the curve ®(0D), where 0D = E, v E,u E,uU E,, is not zero.
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r=°(E1) ;

Since D is an open and bounded set in R?, the mapping ®: D U dD — R?
is continuous and the point (&, 1,) ¢ ®(0D), then there exists Brouwer degree
deg (®, D, (&, 1,)) of the mapping @ with respect to the set D and to the point
(&, no)- Moreover we have deg (®, D, (&, n,)) = mg)(éo, 1n,). Consequently,

(@

deg (®, D, (&, ny)) # 0. It follows that the point (&,, n,) belongs to the range

of @ i.e. there exists a point (p,, ¢,) such that the pair (u, v) of functions u, v

satisfies (1.1), (1.2) and the initial conditions u(0) = p,, v(0) = ¢,, u’(0) =0,

v'(0) =0 have the property u(x)>0 (0=x<¢&), u(&) =0, v(0)>0,"
v(&) = To.

In Sec. 3 we show some lemmas needed for the final conclusion in Sec. 4.

3. Lemmas

Lemma 1. Let B, s, s, be real numbers, 0 < < 1,0<s< 1, | <s57' <2.
We abbreviate

0= [Z(Ssl—l)b A 4lnﬂ_l]2(s - 51)_2;Q| = G\(Q). 3.1

Let Ue C'([0, s]), U(x) = Q, (0 < x < s) and let v be a solution of the differential
equation

v" + bx~'v' — g(x, U(x), v, U'(x), v)v =0 (3.2)
22



on the interval [0, s] with v’(0) = 0, v(0) > 0. Then we have
0 < v(x) < Bu(s) O0O=x=<ys). 3.3)
Proof. The functions v and v’ are positive throughout 0 < x < s (see the

beginning of Sec.2). Putting I y by using (1.5) and from monotonicity of
function g, we have ’
Y+ +bx7'y =g(x, Ux), v, U'(x), v') 2 g(U(x)) 2 g,(Q)), y 2 0.
Hence g,(Q)) = £,(G,(Q)) = Q we have

y+y+bx'y20, y(x) =00 = x<s).

1
If y(so) = % Q’ for some point s,€[s,, s] we have y'(s,) > 0. Indeed, for this

! 1
point it holds y’(s,) = — Eb— 0’ + % Q > 0. Therefore we can have y < %Q’ at
S

most on an interval 5, < x < 5, with s, < 5. On that interval we have
’ l b h l %
(x”y)zExQ, Oéxyéith-

1
Hence the length of the interval cannot exceed (s,s,)’Q 2. At this is at most

1
%(s — 5,), we have y > %Qz at least on %(s + 5,) < x < 5. Hence

I 1@=r a2zl
nv(s, le(x) x_2

and it follows that v(s,) < Bu(s).
Then from monotonicity of function v we get

1
2'%(s—s,)>lnﬂ‘l

0 < v(x) < Bu(s) 0=x=<ys).

Lemma 2. Let h,, h, be real numbers, 1 <h, < h,. Let we C'([0, 7)),
w(x) = 0(0 < x £ y)and let foreach x€[0, 7], z,€ R, , z;€ R hold the inequality

hl éf(xa 2y, W(X), 23, wl(x)) é h2' (34)

Let u be a solution of the equation
u + ax'w + f(x, u, wx), ', w(x)) u=0 (3.5)
23



with #(0) > 0, ©’(0) = 0. Then there is a number & with

(ST

vhy* S &< yhy (3.6)
such that u is positive for 0 < x < £ and zero at &.
Moreover, if x, is any number with 0 < x, < &, and if — % is ab-
u(x,
breviated to r(x,), then we have r(x;) > 0 and
! a
Xo + [215 + 2r(x0)] ' £ & < xo + Kr™'(xo) b, (3.7)
where a* = max{l; a},
K = max {2";}' max M} (3.8)
osvsty J(x)
Proof. Putting y = 2 we get, instead of (3.5),
u
Y+ ¥+ axy + flx, u, wx), w', wx)) = 0, y(0) = 0. (3.9)
Consider the functions u,, and u,, defined by
u(x) = x"J(h;x) (i=1,2).
It can be verified that the function y; (i = 1, 2) defined by
y _1
p = o<xan Ty
u,(x)
has the following properties: '
yityi+axTlyi+h=0, y40) =0,
=k 4
yi(x) <0 O<x<h *y), y(x) > —oo forx—>h, 2y,
and
1 ' 3 1
1 2 |
o = =i e < p 7y, (3.10)
J ok x)

For each point (x, y,(x)), equation (3.9) defines the value of the derivative
y’, or the slope of the tangent line to the integral curve passing through this
point (if such exist). Inquiring the line elements of the differential equation (3.9)
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on the curves y,, y, we can easily find out that everywhere where the functions
Y1, Y, », are defined it holds y, < y < y,. Indeed, y,(0) = »,(0) = y(0) = 0 and

O e = — V) = axT Iy (x) = flx, wy(x),. w(x), ui(x), wi(x)) S

IIA

—yi(x) — ax”'yi(x) — hy = yi(x),

(y/)(x. ¥5(x) = —y22(x) - ax_lyZ(x) —f(x’ ul(x)’ 14'(X), u;(x), wl(x)) ,2_
2 —y3(x) — ax”'yy(x) — by = yy(x).

It follows that the solution of (3.9) stays between these two curves.
Therefore it has a vertical asymptote x = & with some & satisfying (3.6). The
situation is shown in Fig. 3. It follows that u(x) > 0on 0 < x < £and u(¢&) = 0.

o A
i xkﬁ § Ut ¥
0 : : X
' :
| |
: i
[ I
|
! |
|
|| 1
| ]
1 |
! i
I i
5 :
yZ y y1
Fig.3
Next we take an x, with 0 < x, < &, we put r(xy) = — u(ﬁ‘% and we take a
number s, with s, > r(x;). Through the point (x,, —s,) we draw the curve
P e | R (.11
x—A
where 4 = x; + — % __ It is obvious that
so + h,

2
A< ’;") < P —ax ) — b S

70 = —50x) — hz(
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—JHx) = ax”'H(x) = flx, @(x), w(x), #'(x), w'(x)) =
i'(x)

ux

= (¥ ). 5xy» Where = ji(x), 4(x) > 0(x, < x < A).

Hence the line elements of (3.9) cut the curve (3.11) as shown in Fig. 4, and
we infer that our solution of (3.9), which passes through point (x,, —r(x,)), stays

to the right of that curve. Hence 4 < &.

y

-rixe)t

—SQJ

= -1y

b <SS N M PR IS | £ V5

-~
y
Fig.4

Up to now we have shown that £ 2 x, + —=— for all s, 2 r(x,). The

» + 5o
i

, considered as a function of s, has its maximum at s, = h?,

function

h2+SO
1

] 1
whence & = x, + % hy? if r(x,) < K.

If r(x,) > hg we still have &> x, + _ rxo))

r(xo) + hy
We easily mfer that £ > x, + [2h2 + 2r(x0)] " holds in both cases. Indeed,
it 0<r(x) < h2 then x,+ ; hy 2 =x, + (2h ) 2 X+ [2h + 2r(x,)]~". For

r(x,) > h% we have r(x,) > and, consequently, x,+ r(Xo) = X,
1 (%) : r’(xo) + hy
+ [r(xo) + E )] 2 X+ (2r(x0)) ' 2 xp + [2h§ + 2r(x,)] "
r(x,
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In order to prove the upper estimate of (3.7) we transform the equation
(3.9), putting x“y(x) = z(x) for a > 0:

Z' 4+ x72 + XY(x, u(x), wx), u'(x), w(x)) = 0.

Consequently z' + x “z2 < 0 for 0 <x < & (since x°f > 0). It follows that
Y >x“ Asz<O0forx,<x<é& and z7'— 0 as x —» £, we infer that

(xr(x))~! = j Yy dx 2 j “xdx > f gy = (& = x0) £,

XO

hence (& — x,) r(x,) < (é) for a > 0.
Xo
This inequality is useless if x, is small, but we know (cf. Fig.3) that for

=1 ’
0<x,< I yh, * we have r(x,) < #2(xo)
2 uy(xo)

Hence

1 L
(& = xo)r(xs) < Er(xe) < Ry max (M) if xo < % yhy 2.

Oé.vg%r J(x)

- .l. a (1
If x, = % yh, > we have (& — x,) r(x,) < (—€—> < 2"y “hi&. So if we take K
X
and a* as in (3.8) and we use £ < y, we get the upper estimate of (3.7) for a > 0.
That upper estimate also holds for a = 0 because (£ — xp) r(x,) < 1 and 4, > 1.

Lemma 3. Let £, and 7, be real numbers, and assume 0 < & < 7, 1, > 0.
Then there is a positive number P with the following property:

If £ is a real number with 0 < & < &, and if the functions u, ve C' ([0, &])
satisfy (1.1) and (1.2) for 0 <x < & with u(0) = P, u(x) >0 (0 = x < &),
u(é) =0, v(0) > 0, «'(0) =v’(0) = 0, then we have

v(&) > 1.

Proof. On the interval 0 < x < £, the function uy(x) = u(0) I'(a + 1)2°x~°.
-Jo(x) (where I is the gamma function, a=%(a — 1), J,(x) is the Bessel
function) satisfies

ug+ ax 'ug 4+ uy =0

and has initial values u,(0) = u(0) (precisely uy(x) - u(0) for x —» 0%), uy(0) =
= y'(0) = 0.
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Since the functions u, v satisfy
W +ax w4 fx,u, 0,0, v )u=0

on the interval (0, £], it is obvious that functions

u uj .
y=—, y,=- satisfy
u

Uy
YV+y+axy+f(x,u v, u,v)—1]+1=0, y0)=0, (3.12)

Yo+ yi4+ax 'y, +1=0, 10(0) = 0.

W) _ Jas1(x) for 0 < x <& If the
uy(x) Jx)
“perturbation” f(x, u, v, u’, v’) — 1 in (3.12) is “small”, the value of y(x) does
not deviate much from y,(x). Note that this fact follows from the continuous
dependence of the solutions (3.12) on parameters. Namely, the equation satisfies
uniqueness condition and its “‘right — hand side*” is continuous for a solution
y with condition y(0) = 0. From (1.4) and from properties of the functions f|,
/it follows that f(x, u, v, u’, v’) — 1 is to be “small” under the condition v be
“small”.

In particular we can find a number 6 > 0 with 0 < 6 < 7, such that for all
p with 0 < p < £ the following is true:

If |v(x)| < & for 0 < x < p then

Let M be the maximum of

YOl<om 0sx=p).
u(x)
We take a*, K as in (3.8) and we define
5
ﬂ =
m

p=14+ 371+ fo(n) + 8M] ™,

P =G 2(yu"Y + 4In " P exp[Kyu~'(1 + f5(m))7],
s =&6—2u,
s=&6E— .

Note that §, B, u, M and P depend only on &, and 7,. The numbers s, and
s, however, depend on &, 7, and &. We shall assume that u(0) = P,0 < £ < €,
v(&) < n, and we derive a contradiction.
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As v is increasing for 0 < x < & (see Sec. 2) we have
O<v@=svx)sv()=n (O0=x=9).
From (1.4) and from monotonicity of functions f,, f, we get
I+ £1(0(0) = f(x, u(x), v(x), u'(x), v'(x)) = 1 + Lw(x)) = 1 +f(m)  (3.13)
for0<x =&
We define functions U, U, V, V on the interval [0, ]:
U(x) = u(x), U(x) = w'(x), ¥(x) = v(x), V(x) =0’ (x)(0 < x <),
U(x) = u(§), U(x) = u' (&), V(x) = v(§), V(x) =v'(E(E<x = p).
Consider the initial value problem
' +ax~'z + f(x, U(x), V(x), Ox), V(x))z=0, (3.14)
2(0) = u(0), z'(0) = u'(0) =
This problem has exactly one solution and obviously
z(x) = u(x) for 0 < x < £ (see beginning of Sec. 2).

Then z(x) > 0 (0 £ x < &), z(£) = 0, z/(0) =
Hence by (3.13)

1+ £1(00) £ f(x, Ux), V(x), Ux), V(x)) £ 1+ fo(m) O=x=7).

Lemma 2 can be applied to the equation (3.14).
The property that z is positive for 0 £ x < £ and zero at £, determines &
uniquely, and therefore the £ in Lemma 2 is the same as the one we have here.
In particular (3.6) says that

-1 1
Al + f(m)] * < & (and also &< y[1 + £,(w(0)] ).
It follows that &£ > 3y and therefore

O<pu<s <s<22s.
By (3.7) we have

) 1+ £y ()
u(x)

a*
2

r(x) =

0O=x=yv)
= X

(for x = 0 we have r(x) = 0) and it follows by integration that

n @ < k1 +f<m)12f KO+ f?
(s}

s
0o E—x u

0= x =)
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Then from the monotonicity of the function u we obtain

*

u(x) 2 u) exp {— Ksp~'[L + ()7} (O Zx=s).

Since u(0) = P, we derive u(x) = G,(Q) = 0, (0 £ x < s5) with Q given by (3.1)
(notethat s< 9, 0 < u<s,<s<2s,u=s5s—s5,0<pf<1) By Lemma | it
holds

0 < v(x) < Bi(s) O=x=<ys).
From our assumption v(&) < 7, and from the monotonicity of v we obtain
0<v(x)<pBm=96 O=x=s).

Taking the p occuring at the beginning of this proof to be equal to s,, we
find
u'(x)
u(x)
1
Finally applying (3.7) to x, = 5,, h, = 1 + f5(1,) we get s, + [2(1 + f5(m))* +

+ 4M]~' < &£ and this contradicts the definition of s,. Indeed, by this definition
and the definition of u it holds

<2M 0 =x=ys).

E=s,+2u < s+ 200 + f5(m)) + 4M] .

4. Conclusion

Theorem 1. Assume &, > 0 and assume that u, ve C°([0, &]) N C*((0, &)
satisfy (1.1) and (1.2) for 0 < x £ &, with u(x) >0 (0L x < &), u(&) =0,
u'(0) = t’(0) = 0, v(0) > 0. Then we have (with 1, = v(&))

1

AL+ A)] <& <.
Proof. From (1.4) and from the monotonicity of functions v, f}, f, we obtain
1 <1+ £((0)) S flx, u(x), v(x), w'(x), v'(x)) S T+ fo(m)  (0=x=&)

It follows from Lemma 2 (cf. the proof of Lemma 3) that

) —

AL+ £(n)] S &= 71+ £00)]

Then we have
1

YL+ ()] P& <y

Using the Sturms$ method we prove that the equality cannot hold.
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Put uy(x) = x~%J(y& 'x), then
ug + ax 'ug+ Y& 2uy =0

and
&o

f T, wx), 50, 10, () — P& up() ) dx = [ [xe(uae) wix) —
0 0
— uy(x)u'(x)))'dx = 0.

Now 1 + f,(1,) £ &% is impossible since x*> 0, u(x) > 0, u,(x) > 0 and

fix, u(x), v(x), W(x), V(x)) = P& S T+ f0() — P& < 1+ fo(mo) - P& °

for 0 < x < &,. Therefore

1+ fo(me) > P &2

=l
Theorem 2. Assume &> 0, n,> 0, ¥[1 + f,(1,)] *< & < 7. Then there
exist functions u, ve C°([0, &]) N C*((0, &)) that satisfy (1.1) and (1.2) for
0 < x <&, with

u(x) >0 (0 = x < &), u(§) =0, u'(0) =v"(0) =0, v(0) > 0, v(&) = 1.
Proof. We choose numbers &,, 7, with

<&<rv.m<m,

and we take P according to Lemma 3.
We choose another number o with o < P,

0<0< G2V '[m— R(Yé&?*— DI 4.1)

(note that F and G, denotes the inverse function of f; and g;, respectively
i=1,2)).

With the values of o, P and 7, we consider the rectangle in Fig. 1 and its
image under the mapping @ (see Sec. 2). If (p, ¢) lies on the lower edge E,, the
solution for v is identically zero, whence
u(x) =pI(a+ 1)2%%J(x) (0 = x < 7), and ®(p, q) stays at the point (7, 0).

Next take (p, q) on the edge E,, where p = 0,0 < ¢ < n,. Put ®(p, q) = (&, n).
We have 0 < u(x) £ 0 (0 = x < &) and v is positive and increasing (cf. Sec.2).
Therefore

v"(x) £ 0"(%) + bx~'v'(x) = g(x, u(x), v(x), u'(x), v'(x)) v(x) £
< v(x) g,(u(x)) = ng,(o)
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and by integration

&
n = 0(&) = v(0) + v(0) &+ j (E= o't <
0

2

< 0(0) + 1g:(0) % < 0(0) + % ng0) 7%

whence

(1 =380 7) < 00 (42)
Obviously it holds
I <1+ £i(0(0) = flx, u(x), o(x), w'(x), v'(x)) = 1 + f,(n) O=x=s9)

and then from Lemma 2 we get

E< [l +£0)]
or respectively 0<v0) S F(PEI-1), (4.3)

From (4.2) and from (4.3) (note that 1 — %gz(a) ¥ > 0) we get

ns [1 - %gz(a) f]— E(PE2—1).

On the other hand we have, by (4.1):
1 —l
m>[1-se0 7| Bt -,

So the image of the edge F, does not get to the right of the continuous curve
representing graphically the continuous function

n= [1 - %g;(a) f]_ F(FE2— 1), £€(0, 7]

with the property n =0 for £— y~, n—> oo for £ - 0", whereas the point
(&, 1) lies to the right of it.

The image of the edge E; lies entirely above the level n = 5,, simply because
q = n, implies (&) > v(0) = n,. Finally, the image of E, is a curve that runs
from some point above the level n = 7, to the point (y, 0) without entering into
rectangle
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This we proved in Lemma 3 and depicted in Fig.2. From the survey we
offered it follows that the image of our rectangular contour has non-zero
winding number with respect to the point (&), 7). It follows that at least one
interior point of the rectangle is mapped onto (&, 1,). This completes the proof.

From Theorem 1, Theorem 2 and from the definitions of functions f,, f, it
evidently follows that following assertions are true.

Theorem 3. For a solution of the boundary value problem (I), (II) to exist
it is necessary that

2
4 < (,Z) < HO (1)
0

and it is sufficient that

A< (1) < HO(ny),

Iy
where 4 = H{"(0) = H{"(0).
Corollary 1. Suppose that function H, instead of assumptions (A)), (A,),
(A,) satisfies the conditions:

Hl(ta Zys 25 23 24) = HO(ZZ) for CaCh (t, Zyy 225 235 24)6[0, T]X R-zi— X R2

where the function H,: R, - R, with Hy(0) £ ¥t~ *> 0 satisfies one of the

following conditions:

1. H,is a continuous increasing function on the interval R, and it is unbounded
from above on this interval. For each compact set [a,, b,] X [a,, b,] = R2
there exists a constant L > 0 such that

|z)Hy(2;) — 2)Hy(Z)| £ Lllz) — Z,| + |z, — 2]
((z1, 2) (2, 2y €lay, b\] x [ay, b,))

2. The function H, has a derivative g’-g on the interval R, satisfying inequali-
23

dH,

tiess0 < ¢ <
dz,

< C (where ¢, C are some constants) on this interval.

: ; . .. dH, . s o o
3. The function H, has a continuous derivative d—o on the interval R, satisfying
Z3

. . dH, . ..
the inequality 0 < ¢ £ —2 (where c is a constant) on this interval.
2

Then the problem (I), (I) has a solution if and only if

Hy(0) < (Z) < Hy(my).

Iy
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Remark 1. In the paper [1] it is stated that the problem (I), (II) with
H\(t, z,, z,, 23, z,) = A + Bz, (where A, B are positive constants),

Hy(t, 2\, 25, 23, 2) =z, a=b=ty =1y, =1

has a solution if and only if 4 < ¥(0) < 4 + B, where y(0) = 2,405 is the first
positive zero of the Bessel function Jy(x). It is clear that this result is an easy
consequence of Corollary 1.

By Theorem 3 the solvability of the problem (I), (II) depends on the value 7,
where ¥ = y(a) is the first positive zero of the Bessel function J(x) with

a= % (a — 1). Then the solvability of this problem depends on the value ae R, .

If we assume what has been stated above that b= 0, 7= ¢, > 0 are given
constants and H,, H, are given functions satisfying the assumptions (A)), (A,),
(A,) then the following problem can be solved: Is there at least one real number
a = 0 such that the problem (I), (II) has a solution?

Since ¥y = y(a) regarded as a function of ae [ — % oo) is continuous, increasing
and unbounded from above on the interval [— %, oo) (cf. [5, p.125)),

4 (— %) = g , 50 by using Theorem 3 we easily prove

Corollary 2. 1. Let there exist at least one function H{" with the properties
mentioned in the assumption (A;) and such that

H () > (£)).
(o) > (Zto

Then there exists a bounded interval 7 = R, such that the problem (I), (II)
with a coefficient ae I has a solution.
2. Let there exist at least one function H{" with properties mentioned in the
assumption (A;) and such that ’

2
HI () < (-’i) .
2,

Then the problem (I), (IT) has no solution for each ae R, .
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PE3IOME
OB OJHOM HEJIMHEMHOM J1BYXTOYEUHOM KPAEBOM 3AJIAYE
Mosed dynbuep, Hutpa

B craThe 06061aeTca o/iHa KpaeBas 3a/iaua NpeAsoXKeHa roUIaHACKuM ¢usnkom. M. 7. L1,
BaH 'emepToM (B paboTe o razoBom pa3spsae), kotopyto uccnenosan H. I'. ne Bpyuitn. Tononoru-
4YECKHM METOJOM 3JeCh J0Ka3bIBAETCA JOCTAaTOYHOE ycioBHe U MeroaoM lliTypma 3aecy Takxke
Jl0Ka3bIBa€TCA HEOOXOAUMMOE YCIIOBHE LISt pa3peLIMMOCTH 3TOi 060011eHHO# 3anayn. B Hell noka-
3aHO, 4TO /I JOBOJIbHO LIMPOKOIO Kjacca KpaeBbIX 3aa4 pacCMaTPUBAEMOro THMA COBMAJaeT
HE0OX0aMMOE YCIIOBHE IS PAa3PELIMMOCTH 3TOH KpaeBoOM 3ala4u € JOCTATOYHbIM YCIIOBHEM.

SUHRN

O JEDNEJ NELINEARNEJ DVOJBODOVEJ OKRAJOVEJ ULOHE

Jozef Fulier, Nitra

V élanku sa zovseobeciiuje $pecidlna okrajova iloha sformulovana holandskym fyzikom
M. J. C. van Gemertom (v praci o vyboji v plyne), ktora vysetroval N. G. de Bruijn. Topologickou
metddou je tu dokdazana postadujica podmienka k tomu, aby existovalo rieSenie tejto zovieobec-
nenej okrajovej ulohy. Je tu tiez ukazané, e pre dost §iroki triedu okrajovych uloh skiimaného typu
je nevyhnutna podmienka pre existenciu rieSenia danej okrajovej ulohy totoznid s podmienkou
postadujacou.
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