

Werk

Label: Article Jahr: 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59|log5

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVIII—LIX

AN ERGODIC PROPERTY OF BOCHNER INTEGRABLE FUNCTIONS

ERVÍN HRACHOVINA, Bratislava

In this paper we are interested by ergodic properties of a subset of Bochner integrable functions (see [1]). We shall consider integrable functions with values in a regular boundedly σ -complete vector lattice.

Throughout the paper, R will denote the set of all real numbers, N the set of all positive integers, Y a regular boundedly σ -complete vector lattice (see [5]) and Y^+ the set $\{y \in Y : y > 0\}$. We shall denote the r-convergence of a sequence $(y_n)_{n \in N}$ of elements of Y by $\lim_{n \to \infty} y_n = y$.

Let X be a non-empty set. We say that a sequence of functions $(f_n)_{n \in N}, f_n: X \to Y$, uniformly r-converges to f iff there exists $u \in Y^+$ such that the following condition holds: given $\varepsilon \in R^+$, we can find $n_o \in N$ such that, for each $n \ge n_o$ and $x \in X$, we have the inequality: $|f_n(x) - f(x)| \le \varepsilon u$.

We shall denote by $u - \lim_{n \to \infty} f_n = f$ the uniform r-convergence of a sequence of functions $(f_n)_n$ to f.

Let (X, \mathcal{S}, P) be a probability space. A function $f: X \to Y$ is said to be a simple integrable function if there are pairwise disjoint sets $A_1, \ldots, A_n \in \mathcal{S}$ and elements $a_1, \ldots, a_n \in Y$ such that

$$f = \sum_{i=1}^n a_i \chi_{A_i}.$$

The element I(f) defined by

$$I(f) = \sum_{i=1}^{n} a_i P(A_i)$$

is called the integral of the function f. If $(f_n)_n$, $(g_n)_n$ are sequences of simple integrable functions such that

$$u-\lim_{n\to\infty}f_n=u-\lim_{n\to\infty}g_n=f,$$

then there is $c \in Y$ such that

$$\lim_{n\to\infty} I(f_n) = \lim_{n\to\infty} I(g_n) = c.$$
 (1)

The value c from (1) is called the integral of the function f and we shall denote it I(f), too.

We denote

 $F_1 = \{f: X \to Y; \text{ there are simple integrable functions } f_n \text{ such that } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable functions } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple integrable } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ there are simple } f_n = \{f: X \to Y; \text{ the$ $u - \lim_{n \to \infty} f_n = f\},$ $F = \{f: X \to Y; \text{ there is } g \in F_1 \text{ such that } f = g \text{ a.e.} \}.$

We define for $f \in F$

$$I(f) = I(g)$$
.

The value I(f) is called the integral of the function f, too, and the family Fdenote the family of integrable functions.

The following proposition is evident.

Proposition. If $f, g \in F$, $c \in R$, then f + g, cf, |f|, $\sup\{f, g\}$, $\inf\{f, g\}$ are integrable functions and

$$I(f+g)=I(f)+I(g),$$

$$I(cf) = cI(f)$$

$$|I(f)| \leq I(|f|).$$

If $f \leq g$ then $I(f) \leq I(g)$. Further, if T is a measurable P-preserving transformation and $f \in F$, then $f \circ T \in F$, too.

Recall that (X, \mathcal{S}, P, T) is called an ergodic system if (X, \mathcal{S}, P, T) is a dynamical system and T is an ergodic transformation. Put

$$S_n(f, x) = \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$$

for $f \in F$, $x \in X$, $n \in N$.

Theorem. Let (X, \mathcal{S}, P, T) be an ergodic system and $f \in F$. Then

$$\lim_{n\to\infty} S_n(f, x) = I(f) \text{ a.e.}$$

Proof. (i) For a simple Y-valued function the proof of this theorem follows from the individual ergodic theorem for a real valued function.

(ii) Let $f \in F_1$ be arbitrary, then there is a sequence of simple Y-valued measurable functions $(f_k)_k$ and $u \in Y^+$ such that for each $\varepsilon \in R^+$ there is k_o such that for each $k \ge k_o$ and $x \in X$

$$f_k(x) - \varepsilon u \le f(x) \le f_k(x) + \varepsilon u.$$
 (2)

By Theorem 5 in [2]

$$\lim_{n \to \infty} S_n(f, x) = f^*(x), f^* \in F \text{ and } I(f) = I(f^*).$$

From (2) we have

$$|f^*(x) - I(f_k)| \le \varepsilon u$$
 a.e.

for $k \ge k_o$, i.e. $f^*(x) = w \in Y$ a.e. Since $u - \lim_{n \to \infty} f_n = f$, so w = I(f) and therefore Theorem holds for $f \in F_1$.

(iii) Let $f \in F$ be arbitrary. Then there are $g \in F_1$ and $A \in \mathcal{S}$ with $P(A^c) = 0$ such that f(x) = g(x) for $x \in A$. Put

$$\mathbf{B}^{\mathrm{c}} = \bigcup_{i=0}^{\infty} \mathbf{A}^{\mathrm{c}}, \ h = g \chi_{\mathrm{B}},$$

then $P(B^c) = 0$ and I(h) = I(f). According to (ii) we have $C \in \mathcal{S}$ with $p(C^c) = 0$ and for each $x \in C$

$$\lim_{n\to\infty} S_n(h, x) = I(f)$$

and therefore

$$\lim_{n\to\infty} S_n(f, x) = I(f)$$

for $x \in \mathbf{B} \cap \mathbf{C}$.

The theorem is proved.

Remark. An individual ergodic theorem in vector lattices is proved in [2] (see Theorem 5).

REFERENCES

- 1. Cristescu, R.: Spatii ordonate si operatori liniare, Bucuresti 1970.
- 2. Hrachovina, E.: Individual ergodic theorem in a regular space, Math. Slovaca 37, 1987, 3, 233—238.
- 3. Maličký, P.: Random variables with values in a vector lattice mean value and conditional mean value operators, AMUC 52-53, 1987, 249-263.

4. Maličký, P.: A vector lattice variant of the ergodic theorem, Suppl. Rend. Circ. Mat. Palermo, Serie II, No 14, 1987, 391—397.

Received: 20. 12. 1987

- 5. Vulich, B. Z.: Vvedenie v teoriju poluuporiadočenych prostranstev, Moskva 1961.
- 6. Walters, P.: Ergodic Theory Introductory Lectures, Springer Verlag, Berlin 1975.

Author's address: Ervín Hrachovina MFF UK Mlynská dolina 842 15 Bratislava

РЕЗЮМЕ

ЭРГОДИЧЕСКИЕ СВОЙСТВО БОХНЕРОВСКИХ ИНТЕГРИРУЕМЫХ ФУНКЦИИ

Эрвин Храховина, Братислава

В этой статии мы занимаемся одним эргодическим свойством функции со значениями в регулярной упорядоченной σ -полной структуре.

SÚHRN

ERGODICKÁ VLASTNOSŤ BOCHNEROVSKÝCH INTEGROVATEĽNÝCH FUNKCIÍ

Ervín Hrachovina, Bratislava

Článok sa zaoberá ergodickou vlastnosťou funkcie s hodnotami v regulárnom usporiadanom σ -úplnom vektorovom zväze.