

Werk

Label: Article **Jahr:** 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVIII—LIX

OBSERVABLES IN FUZZY QUANTUM POSETS

ANATOLIJ DVUREČENSKIJ, Le Ba LONG, Bratislava

1. Introduction

A fuzzy analogue of a random variable of a classical probability space is an observable. If (Ω, \mathcal{S}) is a measurable space and $\xi \colon \Omega \to R$, then the measurability of ξ means that $\xi^{-1}(E) \in \mathcal{S}$, S, for any $E \in B(R)$, where B(R) is the Borel σ -algebra of the real line R. The mapping $x \colon B(R) \to \mathcal{S}$ defined by $x(E) \colon = \xi^{-1}(E)$, $E \in B(R)$, is a σ -homomorphism, called an observable of \mathcal{S} . It is well known that there is a one-to-one correspondence [8] between random variables of (Ω, \mathcal{S}) , ξ , and σ -homomorphisms, x, of (Ω, \mathcal{S}) which is given by the formula $x(E) = \xi^{-1}(E)$, $E \in B(R)$. The concept of an observable as an homomorphism is also accepted in quantum logic theory [12] as well as in some models of fuzzy sets [10, 5].

In the present paper, we give some characterizations of observables of fuzzy quantum posets via pointwisely defined mappings, and the compatibility problem is solved, too. These results extend those in [2, 3, 5, 7].

2. Observables

We recall [4, 9] that a couple (Ω, M) is a fuzzy quantum poset if Ω is a nonvoid set, and M is a subset of $[0, 1]^{\Omega}$ such that

- (i) if $1(\omega) = 1$ for any $\omega \in \Omega$, then $1 \in M$;
- (ii) if $a \in M$, then $a^{\perp} := 1 a \in M$;
- (iii) if $1/2(\omega) = 1/2$ for any $\omega \in \Omega$, then $1/2 \notin M$;
- (iv) if $\{f_i\} \subset M$, $\min(f_i, f_j) \le 1/2$, for $i \ne j$, then $\bigcup_i f_i = \sup_i f_i \in M$.

In an analoguos way as a fuzzy union, \cup , we define a fuzzy intersection $\bigcap_i a_i$: $\inf_i a_i$ of a sequence of fuzzy sets $\{a_i\}$ of M. The element a^{\perp} is said to be the fuzzy complement of a fuzzy set a. Two elements a and b of M are said to be fuzzy orthogonal and we write $a \perp_F b$ iff $a \cap b \leq 1/2$. It is evident that $a \perp_F b$ iff $\{a > 1/2\} \cap \{b > 1/2\} = \emptyset$, where $\{a > 1/2\} = \{\omega \in \Omega: a(\omega) > 1/2\}$, etc. Moreover, we write $a \perp b$ iff $a \leq b^{\perp}$. It is clear that if $a \perp b$, then $a \perp_F b$, and the converse does not hold in general. In addition, if $a \cup a^{\perp} = b \cup b^{\perp}$, then $a \perp_F b$ iff $a \perp b$.

It is evident that, with respect to the natural ordering \leq on M defined via $a \leq b$ iff $a(\omega) \leq b(\omega)$ for each $\omega \in \Omega$, M is a poset with the minimal and maximal elements 0 and 1, respectively, and with an orthogonality $\bot : a \mapsto a^{\bot}$, $a \in M$, such that (i) $a \cup a^{\bot} \leq 1$, $a \cap a^{\bot} \geq 0$ for any $a \in M$; (ii) $(a^{\bot})^{\bot} = a$ for any $a \in M$; (iii) if $a \leq b$, then $b^{\bot} \leq a^{\bot}$.

We say that a mapping x from the Borel sets B(R) of the real line R into M is an observable of (Ω, M) if

- (i) $x(E^c) = x(E)^{\perp}$ for any $E \in B(R)$;
- (ii) $x(E) \perp_F x(F)$ whenever $E \cap F = \emptyset$, $E, F \in B(R)$;

(iii)
$$x\left(\bigcup_{i} E_{i}\right) = \bigcup_{i} x(E_{i}) \text{ if } E_{i} \cap E_{j} = \emptyset \text{ for } i \neq j, \{E_{i}\} \subset B(R).$$

A simple example of an observable is a mapping x_a , where a is a fixed fuzzy set of M, defined via

$$x_a(E) = \begin{cases} a \cup a^{\perp} & \text{if } 0, \ 1 \in E \\ a^{\perp} & \text{if } 0 \in E, \ 1 \notin E \\ a & \text{if } 0 \notin E, \ 1 \in E \\ a \cap a^{\perp} & \text{if } 0, \ 1 \notin E, \end{cases}$$

for any $E \in B(R)$.

Remark. If, in the definition of x, B(R) is replaced by any Boolean σ – algebra \mathcal{A} , then x is called an \mathcal{A} -observable of (Ω, M) . A non-void subset A of M is said to be a Boolean σ -algebra of (Ω, M) if

- (i) there are the minimal and maximal elements 0_A , $1_A \in A$ such that $a \cap a^{\perp} = 0_A$, $a \cup a^{\perp} = 1_A$ for any $a \in A$;
- (ii) with respect to 0_A , 1_A , \perp , \cap , and \cup , A is a Boolean σ -algebra (in the sense of Sikorski [11]).

From the definition, it is immediately clear that if x is an observable, then $R(x) = \{x(E) : E \in B(R)\}$ is a Boolean σ -algebra of (Ω, M) with the minimal and maximal elements $x(\emptyset)$ and x(R), respectively.

For any $a \in M$, we put

$$M_a = \{b \in M \colon b \cup b^{\perp} = a \cup a^{\perp}\},\tag{2.1}$$

then either $M_a \cap M_b$ is the empty set or $M_a = M_b$. In other words, $\{M_a : a \in M\}$ is a partition of M.

Define

$$\Omega_a = \{ \omega \in \Omega \colon a(\omega) \neq 1/2 \}, \tag{2.2}$$

and, for any $b \in M_a$, put

$$\Omega_a(b) = \{ \omega \in \Omega_a \colon b(\omega) = (a \cup a^{\perp})(\omega) \}, \qquad (2.3)$$

moreover, let

$$Q_a: = \{\Omega_a(b): b \in M_a\}. \tag{2.4}$$

We recall that a $q-\sigma$ -algebra is a nonempty system Q of subsets of a given set $X \neq \emptyset$ such that (i) if $A \in Q$, then $X - A \in Q$; (ii) $\bigcup_{i=1}^{\infty} A_i \in Q$ whenever $\{A_i\}$ is a sequence of mutually disjoint subsets of Q.

Theorem 2.1. (i) Q_a is a $q - \sigma$ -algebra, for any $a \in M$.

(ii) The mapping $\Omega_a(.)$: $M_a \to Q_a$ defined via (2.3) is an ortho σ -isomorphism, i.e. it is bijective and preserves the maximal elements, complements, and joins of any sequences of mutually orthogonal elements.

Proof. It follows from the following simple properties:

- (i) $\Omega_a(b) = \Omega_a(c)$ iff b = c, $b, c \in M_a$;
- (ii) $\Omega_a(b) \subseteq \Omega_a(c)$ iff $b \le c$, $b, c \in M_a$;
- (iii) $\Omega_a(b^{\perp}) = \Omega_a \Omega_a(b), \quad b \in M_a;$
- (iv) $\Omega_a(b) \cap \Omega_a(c) = \emptyset$ iff $b \perp_F c$, b, $c \in M_a$;

(v)
$$\Omega_a \left(\bigcup_{i=1}^{\infty} b_i \right) = \bigcup_{i=1}^{\infty} \Omega_a(b_i), \{b_i\} \subset M_a, \ b_i \perp_F b_j \text{ for } i \neq j.$$

Q.E.D.

An *F*-state of (Ω, M) is a mapping $m: M \to [0, 1]$ such that (i) $m(a \cup a^{\perp}) = 1$ for any $a \in M$; (ii) $m\left(\bigcup_{i=1}^{\infty} a_i\right) = \sum_{i=1}^{\infty} m(a_i)$ if $a_i \perp_F a_j$ for $i \neq j$, $\{a_i\} \subset M$.

Theorem 2.2. Let *m* be an *F*-state on *M*. Then the mapping $\mu_a: Q_a \to [0, 1]$ defined via

$$\mu_a(\Omega_a(b)) = m(b), \qquad b \in M_a,$$

is a probability measure on Q_a ..

Proof is evident from Theorem 2.1.

Lemma 2.3. Let
$$\{a_n\} \subset M_a$$
. Then $\bigcap_{n=1}^{\infty} a_n \in M_a \left(\bigcup_{n=1}^{\infty} a_n \in M_a\right)$ iff $\bigcap_{n=1}^{\infty} \Omega_a(a_n) \in Q_a$. $\cdot \left(\bigcup_{n=1}^{\infty} \Omega_a(a_n) \in Q_a\right)$, and in this case $\Omega_a \left(\bigcap_{n=1}^{\infty} a_n\right) = \bigcap_{n=1}^{\infty} \Omega_a(a_n) \left(\Omega_a \bigcup_{n=1}^{\infty} a_n\right) = \bigcup_{n=1}^{\infty} \Omega_a(a_n)$.

Proof. is straightforward.

Q.E.D.

Theorem 2.4. Let x be an observable of (Ω, M) , then there is a unique functiom $\varphi: \Omega_{x(R)} \to R$ such that φ is $Q_{x(R)}$ -measurable, and

$$\Omega_{x(R)}(x(E)) = \varphi^{-1}(E), \qquad E \in B(R).$$
 (2.5)

Conversely, for any Q_a -measurable mapping $\varphi: \Omega_a \to R$, where $a \in M$, there is a unique observable x of (Ω, M) with $x(R) = a \cup a^{\perp}$ such that (2.5) holds.

Proof. Let x be an observable. From Theorem 2.1 we conclude that $\Omega_{x(R)}(R(x)) = \{\Omega_{x(R)}(x(E)) : E \in B(R)\}$ is a Boolean σ -algebra of subsets of $\Omega_{x(R)}$. Due to Theorem 1.4 by Varadarajan [12], there exists a unique mapping φ : $\Omega_{x(R)} \to R$ with (2.5).

The converse follows from Theorem 2.1.

Q.E.D.

3. Compatibility

A nonempty set A of M is said to be f-compatible if, for all $a_1, a_2, \ldots, a_{n+1} \in A$, we have (i) $b_1 := a_1 \cap \ldots \cap a_n \cap a_{n+1} \in M$, $b_2 := a_1 \cap \ldots \cap a_n \cap a_{n+1} \in M$; (ii) $b_1 \cup b_2 = a_1 \cap \ldots \cap a_n$. The subset A is strongly f-compatible if $A \cup A^{\perp}$ is f-compatible, where $A^{\perp} = \{a^{\perp} : a \in A\}$.

We recall that if $\{a, b\}$ is strongly f-compatible, then $a \cup a^{\perp} = b \cup b^{\perp}$. Indeed, we have $a = a \cap b \cup a \cap b^{\perp}$, and $a^{\perp} = a^{\perp} \cap b \cup a^{\perp} \cap b^{\perp}$ which entail $a \cup a^{\perp} \leq b \cup b^{\perp}$. In the same way we have $b \cup b^{\perp} \leq a \cup a^{\perp}$. In some particular cases, this condition is also sufficient in order that A be strongly f-compatible.

Moreover, if
$$1_a = a_1 \cup a_1^{\perp} = a_2 \cup a_2^{\perp} = \dots$$
, then $1_a = \left(\bigcup_i a_i\right) \cup \left(\bigcup_i a_i\right)^{\perp} = \left(\bigcap_i a_i\right) \cup \left(\bigcap_i a_i\right)^{\perp}$.

Lemma 3.1. Let $a_1 \le a_2 \le ... \le a_n$, $a_i \in M$ for i = 1, ..., n. Then $\{a_1, ..., a_n\}$ is strongly f-compatible iff

$$a_1 \cup a_1^{\perp} = a_2 \cup a_2^{\perp} = \dots = a_n \cup a_n^{\perp}.$$
 (3.1)

Proof. One direction is now clear. For the second one, suppose (3.1) holds. First of all we consider that, for any $i, j, 1 \le i, j \le n$ and any $u, v \in \{0, 1\}$ we have $a_i^u \cap a_j^v \in M$, where $a_i^0 = a_i^{\perp}$, $a_i^1 = a_i$. Moreover, for any $i_1, \ldots, i_{k+1}, 1 \le i_1, \ldots, i_{k+1} \le n$ and any $j_1, \ldots, j_{k+1} \in \{0, 1\}$,

$$b_1 = a_{i_1}^{j_1} \cap \dots \cap a_{i_{k+1}}^{j_{k+1}} = \begin{cases} a_{i_1} \in M \text{ if } j_1 = \dots j_{k+1} = 1\\ a_{i_{k+1}}^{\perp} \in M \text{ if } j_1 = \dots = j_{k+1} = 0\\ a_i \cap a_j^{\perp} \in M \text{ otherwise,} \end{cases}$$

where $i = \min\{i_u : j_u = 0, 1 \le u \le k+1\}, j = \max\{i_v : j_v = 1, 1 \le v \le k+1\}.$ Hence

$$d_{i_1}^{j_1} \cap \dots \cap d_{i_{k+1}}^{j_{k+1}} \cup d_{i_1}^{j_1} \cap \dots \cap (d_{i_{k+1}}^{j_{k+1}})^{\perp} = d_{i_1}^{j_1} \cap \dots \cap d_{j_k}^{j_k} \in M.$$
O.E.D.

Theorem 3.2. Let A be a nonvoid subset of M. The following two statements are equivalent:

- (i) A is strongly f-compatible.
- (ii) There is a Boolean σ -algebra of (Ω, M) containing A.

Proof. The second statement evidently entails the first one. Let now (i) hold. Since $a \cup a^{\perp} = b \cup b^{\perp}$ for all $a, b \in A$, we have $A \subseteq M_a$ for each $a \in A$. Let $\mathscr{A} = \Omega_a(A) = \{\Omega_a(b) \colon b \in A\}$. Then \mathscr{A} is a nonempty subset of the q- σ -algebra Q_a . Let $\{a_1, \ldots, a_n\}$ be an arbitrary finite subset of A. The strong f-compatibility of A and Lemma 2.3 imply that $\{\Omega_a(a_1^{i_1} \cap \ldots \cap a_n^{i_n}) \colon j_i, \ldots, j_n \in \{0, 1\}\}$ is an orthogonal covering of the set $\{\Omega_a(a_1), \ldots, \Omega_a(a_n)\}$. Due to Theorem 3 by Brabec [1], there exists a σ -complete Boolean subalgebra \mathscr{R} of Q_a containing \mathscr{A} . Therefore $\Omega_a^{-1}(\mathscr{R})$ is a Boolean σ -algebra of (Ω, M) containing A.

Q.E.D

Lemma 3.3. Let for a finite set $\{a_1, \ldots, a_n\}$ of M the condition (3.1) hold. Then $\{a_1, \ldots, a_n\}$ is strongly f-compatible iff $\bigcap_{i \in D} a_i \in M$ for any nonempty subset D of $\{1, \ldots, n\}$.

Proof. The proof follows from Lemma 2.3 and the observation that $\left\{\bigcap_{i\in D}\Omega_a(a_i): D\subseteq\{1,\ldots n\}\right\}$, where $a=a_1$, generates an orthogonal covering of $\left\{\Omega_a(a_1),\ldots,\Omega_s(a_n)\right\}$. The rest follows from the criterion of Brabec [1] and Theorem 3.2.

4. On joint observables

In the present section, we shall consider the relation between the joint σ -observable and the f-compatibility of a system of observables.

We say that a system $\{\mathscr{A}_t: t \in T\}$ of Boolean sub- σ -algebras of a Boolean σ -algebra \mathscr{A} is independent (σ -independent) if, for any finite (countable) subset $\alpha \subseteq T$

$$\bigcap_{i\leq n}A_i\neq 0$$

for any $0 \neq A_t \in \mathcal{A}_t$ and any $t \in \alpha$.

Let
$$\mathscr{D} = \mathscr{D}(T) = \left\{ \bigwedge_{t \in \alpha} A_t : A_t \in \mathscr{A}_t, \ t \in \alpha, \emptyset \neq \alpha \subseteq T, \ \bar{\alpha} < \infty \right\}, \ \mathscr{R} = \mathscr{R}(T) \text{ be}$$

the minimal subalgebra of \mathscr{A} containing \mathscr{D} , and let $\mathscr{A}(T)$ be the minimal sub- σ -algebra of \mathscr{A} containing \mathscr{R} .

Let $\{\mathscr{A}_t: t \in T\}$ be a system of σ -independent Boolean sub- σ -algebras of a Boolean σ -algebra \mathscr{A} . We say that a system $\{x_t: t \in T\}$, where x_t is an $\mathscr{A}_t - \sigma$ -observable of a fuzzy quantum poset (Ω, M) , has a joint σ -observable if there is an $\mathscr{A}(T) - \sigma$ -observable x of (Ω, M) such that

$$x\left(\bigwedge_{t\in a}A_{t}\right)=\bigcap_{t\in a}x_{t}(A_{t})\tag{4.1}$$

for any $A_i \in \mathcal{A}_i$, and any finite nonvoid subset $\alpha \subseteq T$, supposing that the fuzzy set intersection on the right-hand side of (4.1) exists in M. It is clear that if the joint σ -observable exists for $\{x_i: t \in T\}$, then it is unique.

We say that $\{x_i: t \in T\}$ is a system of f-compatible observables if $\bigcup_{t \in T} R(x_t)$

is an f-compatible set in M. It is clear that for $\bigcup_{i \in T} R(x_i)$ the f-compatibility and the strong f-compatibility are equivalent.

Theorem 4.1. Let $\{\mathscr{A}_t : t \in T\}$ be a system of σ -independent Boolean sub- σ -algebras of a Boolean σ -algebra \mathscr{A} . For any $t \in T$, let x_t be an \mathscr{A}_t - σ -observable of a fuzzy quantum poset (Ω, M) . Then $\{x_t : t \in T\}$ has a joint σ -observable iff $\{x_t : t \in T\}$ are f-compatible.

Proof. Let x be a joint σ -observable of $\{x_i: t \in T\}$, and denote by R(x) the range of x. Conversely, let $\{x_i: t \in T\}$ be f-compatible. Due to (4.1), $R(x_i) \subseteq R(x)$ for any $t \in T$, so that $\{x_i: t \in T\}$ is a system of f-compatible observables. Due to Theorem 3.2, there exists the minimal Boolean σ -algebra A of (Ω, M) containing $\bigcup_{t \in T} R(x_t)$. We can prove that every Boolean σ -algebra of (Ω, M) is σ -distributed.

butive. Since A is a Boolean σ -algebra, the mapping x defined via (4.1) is defined

well on $\mathcal{D}(T)$. According to Sikorski [11, Theorem 37.1], this mapping may be uniquely extended to an $\mathcal{A}(T)$ - σ -observable of (Ω, M) , that is, to a joint σ -observable of the system $\{x_i: t \in T\}$.

Q.E.D

If, in particular, in Theorem 4.1, $\mathcal{A}_t = B(R)$ for any $t \in T$, we may build up a calculus for f-compatible observables, since the following theorem holds:

Theorem 4.2. Let $\{x_n\}$ be a sequence of observables of (Ω, M) . Then the following criteria are equivalent:

- (i) $\{x_n\}$ are f-compatible.
- (ii) There eists a joint observable for $\{x_n\}$.
- (iii) There exists a sequence $\{f_n\}$ of real-valued, Borel measurable functions and an observable x of (Ω, M) such that

$$x_n = f_n(x), \quad n \ge 1,$$
 (4.2)

where $f_n(x)$: $E \mapsto x(f_n^{-1}(E))$, $E \in B(R)$.

Proof. Theorem 4.2 is a consequence of Theorem 4.1 and Theorem 6.9 by Varadajan [12]

Q.E.D.

Therefore, for f-compatible observables x and y we may define, for example, sum and product as follows: x + y = (f + g)(z), $x \cdot y = (f \cdot g)(z)$, etc.

5. On representation of observables

The following result gives a characterization of observables through a special class of fuzzy sets.

Theorem 5.1. Let x be an observable of a fuzzy quantum poset (Ω, M) and let Q be any countable, dense subset in R. Denote, for any $r \in Q$, $B_x(r) = x((-\infty, r))$. The system $\{B_x(r) : r \in Q\}$ fulfils the following conditions:

$$(i)B_x(s) \le B_x(t) \text{ if } s < t, \quad s, t \in Q;$$

$$(ii) \bigcup_{r \in Q} B_x(r) = a;$$

$$(iii) \bigcap_{r \in Q} B_x(r) = a^{\perp};$$

$$(5.1)$$

(iv)
$$\bigcup_{s < r} B_x(s) = B_x(r), \qquad r \in Q;$$

(v)
$$B_{x}(r) \cup B_{x}(r)^{\perp} = a$$
, $r \in Q$,

where a = x(R) and $a^{\perp} = x(\emptyset)$.

Conversely, if a system $\{B(r): r \in Q\}$ of fuzzy sets of M fulfils the conditions (i) - (v) for some $a \in M$, then there is a unique observable x of (Ω, M) such that $B_x(r) = B(r)$ for any $r \in Q$ and x(R) = a.

Proof. Because $R(x) = \{x(E) : E \in B(R)\}$ is a Boolean σ -algebra, any countable union of fuzzy sets of R(x) also belongs to R(x). Thereby, the first statement of the theorem can be proved easily.

Conversely, suppose that for (Ω, M) and for some $a \in M$, a system $\{B(r): r \in Q\} \subset M$ satisfying the conditions (i)—(v) be given. Due to Lemma 3.1 and Theorem 3.2, there exists the minimal Boolean σ -algebra $\mathscr A$ of M containing all B(r)'s. So, the remaining part can be proved similarly to the proof of Theorem 2.3 in [7].

Q.E.D.

Now we present the main result of this section. For that, we need the following: Let (Ω, M) be a fuzzy quantum poset, and, according to [9], we introduce

$$K(M) = \{A \subseteq \Omega : \text{ there is an } a \in M \text{ such that}$$

$$\{a > 1/2\} \subseteq A \subseteq \{a \ge 1/2\}\}.$$
 (5.2)

Then by [9], K(M) is a $q - \sigma$ -algebra.

Theorem 5.2. Let x be an observable of a fuzzy quantum poset (Ω, M) . Then there is a K(M)- measurable function $f: \Omega \to R$ such that

$$\{x(E) > 1/2\} \subseteq f^{-1}(E) \subseteq \{x(E) \ge 1/2\}$$
 (5.3)

for any $E \in B(R)$. If g is any K(M)-measurable, real-valued function on Ω with (5.3), then $\{\omega \in \Omega : f(\omega) \neq g(\omega)\} \in K(M)$ and

$$\{\omega \in \Omega : f(\omega) \neq g(\omega)\} \subseteq \{x(\emptyset) = 1/2\}.$$
 (5.4)

Conversely, let $f: \Omega \to R$ be any K(M)-measurable function. Then there is an observable x of (Ω, M) with (5.3). If y is any observable of (Ω, M) with (5.3), then $x(E) \perp_F y(E)^{\perp}$ for any $E \in B(R)$.

Proof. Let $\bar{M} = M/I_0$ be a quotient poset which has been defined in [6]. Then by [6], \bar{M} is an orthomodular σ -orthoposet, and $\varphi \colon M \to \bar{M}$ defined via $\varphi(a) = \bar{a}$ is a canonical ortho- σ -homomorphism from M onto \bar{M} . On the other hand, according to the Loomis-Sikorski analogue theorem for (Ω, M) [6], there is a mapping h from the q- σ -algebra K(M) onto \bar{M} such that $h(A) = \bar{a}$ if $\{a > 1/2\} \subseteq A \subseteq \{a \ge 1/2\}$.

Let x be an observable of (Ω, M) . Let $r_1, r_2, ...$ be any distinct enumeration of the rational numbers in R. We shall construct sets $A_1, A_2, ...$ in K(M) such that

(i)
$$h(A_i) = \varphi(x(-\infty, r_i)), \quad i \ge 1$$
,

(ii) $A_i \subseteq A_i$ whenever $r_i < r_i$.

Indeed, it is enough to choose $A_i = \{x((-\infty, r_i)) > 1/2\}$. Since $\{A_i\}$ is a sequence of monotonne subsets of K(M), there exists $\bigcap_i A_i$, $\bigcup_i A_i$ in K(M).

An
$$h\left(\bigcap_{j} A_{j}\right) = \bigwedge_{j} \varphi(x((-\infty, r_{j}))) = \varphi\left(x\left(\bigcap_{j} (-\infty, r_{j})\right)\right) = \overline{0}$$
, we may, by replacing A_{k} by $A_{k} - \bigcap_{j} A_{j}$, if necessary, assume that $\bigcap_{j} A_{j} = \emptyset$. Further $h\left(\bigcup_{j} A_{j}\right) = \varphi\left(x\left(\bigcap_{j} (-\infty, r_{j})\right)\right) = \overline{1}$. Therefore, $h(N) = \overline{0}$, where $N = \Omega - \bigcup_{j} A_{j}$. If we define a mapping $f: \Omega \to R$ via

$$f(\omega) = \begin{cases} 0 & \text{if } \omega \in N \\ \inf\{r_j : \omega \in A_j\} & \text{if } \omega \in N, \end{cases}$$

then f is a well-defined, K(M)-measurable function such that $h(f^{-1}(E) = \varphi(x(E)), E \in B(R)$. In other words, f satisfies (5.3).

Conversely, suppose that f is any K(M)-measurable, real-valued function on Ω , and let $Q = \{r_1, r_2, ...\}$. For any integer $n \ge 1$, we find a fuzzy set $a_n \in M$ such that $\{a_n > 1/2\} \subseteq f^{-1}((-\infty, r_n)) \subseteq \{a_n \ge 1/2\}$. Put $1_K = \bigcap_n (a_n \cup a_n^{\perp}), 0_K = \bigcap_n (a_n \cup a_n^{\perp})$

- = 1_K^{\perp} . For the system $\{b_n : n \ge 1\} \subset M$ defined via $b_n = a_n \cap 1_K^n \cup 0_K$, we have
 - (i) $\{b_n > 1/2\} \subseteq \{a_n > 1/2\} \subseteq f^{-1}((-\infty, r_n)) \subseteq \{a_n \ge 1/2\} \subseteq \{b_n \ge 1/2\};$
 - (ii) $b_n \cup b_n^{\perp} = 1_K$ for any $n \ge 1$;
 - (iii) $b_n \le b_m$ whenever $r_n < r_m$.

Due to Lemma 3.1, the system $\{b_1, b_2, ...\}$ is strongly f-compatible, and, thereby it is contained in some Boolean σ -algebra of (Ω, M) .

If we put $B(r_n) = b_n$ for any $n \ge 1$, then the system $\{B(r): r \in Q\}$ fulfils (i)—(v) of Theorem 5.1, consequently, there is a unique observable x such that $B(r) = x((-\infty, r))$ for each $r \in Q$. Hence, $\{x((-\infty, r)) > 1/2\} \subseteq f^{-1}((-\infty, r)) \subseteq \{x((-\infty, r)) \ge 1/2\}$ for any rational r, which entails the validity of (5.3) for any Borel set E in R.

Suppose now g is any K(M)-measurable, real-valued function on Ω for which (5.3) holds. Then we have

$$\{f < g\} = \bigcup_{r \in Q} \{f < r < g\} = \bigcup_{r \in Q} \{f < r\} \cap \{g > r\}$$

and

$$\emptyset = \{x(\emptyset) > 1/2\} \subseteq \{f < g\} = \bigcup_{r \in \mathcal{Q}} \{f < r\} \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \subseteq \bigcup_{r \in \mathcal{Q}} \{x((-\infty, r) \ge 1/2) \cap \{g > r\} \cap \{g > r\}$$

$$\cap \{x([r, \infty)) \ge 1/2\} = \{x(\emptyset) \ge 1/2\} = \{x(\emptyset) = 1/2\}$$

which proves $\{f \neq g\} \in K(M)$ and (5.4).

Let now y be any observable of (Ω, M) with (5.3). Then

$$\{y(E)^{\perp} > 1/2\} \subseteq f^{-1}(E)^c \subseteq \{y(E)^{\perp} \ge 1/2\} \text{ and } \{x(E) \cap y(E^c) > 1/2\} =$$

= $\{x(E) > 1/2\} \cap \{y(E^c) > 1/2\} \subseteq f^{-1}(E) \cap f^{-1}(E^c) = \emptyset$

which yields $x(E) \perp_E y(E)^{\perp}$ for any $E \in B(R)$.

Q.E.D.

If an observable x of (Ω, M) and a K(M)-measurable, real-valued function f on Ω satisfy (5.3), we shall write $x \sim f$.

Proposition 5.3. Let $x \sim f_i$, for i = 1, ..., n. Then $f_1, ..., f_n$ are f-compatible in K(M).

Proof. According to Brabec [1], it is necessary to show that, for any $E_1, \ldots, E_n \in B(R)$, $\bigcap_{i=1}^n f_i^{-1}(E_i) \in K(M)$. But this follows from the following observation

$$\left\{x\left(\bigcap_{i=1}^{n} E_{i}\right) > 1/2\right\} = \bigcap_{i=1}^{n} \left\{x(E_{i}) > 1/2\right\} \subseteq \bigcap_{i=1}^{n} f_{i}^{-1}(E_{i}) \subseteq$$

$$\subseteq \bigcap_{i=1}^{n} \left\{x(E_{i}) \ge 1/2\right\} = \left\{x\left(\bigcap_{i=1}^{n} E_{i}\right) \ge 1/2\right\}.$$
 Q.E.D.

Theorem 5.4. Let x be an observable of (Ω, M) and $\varphi: \Omega_{x(R)} \to R$ be a unique $Q_{x(R)}$ -measurable function corresponding to x via (2.5). Let f be any K(M)-measurable, real-valued function. Then $x \sim f$ iff

$$f(x) = \begin{cases} \varphi(\omega) & \text{if } \omega \in \Omega_{x(R)} \\ \varphi_0(\omega) & \text{if } \omega \in \Omega - \Omega_{x(R)} \end{cases}$$
 (5.5)

where φ_0 is any mapping from $\Omega - \Omega_{\chi(R)}$ into R.

Proof. Let $x \sim f$, put $\varphi_0 = f | \Omega - \Omega_{x(R)}$, and define φ via (2.5). Then $\{x(E) > 1/2\} = \varphi^{-1}(E) \subseteq f^{-1}(E) \subseteq \varphi^{-1}(E) \cup \{x(E) = 1/2\}$ which gives $\varphi^{-1}(E) \subseteq G^{-1}(E) \cap \Omega_{x(R)} \subseteq \varphi^{-1}(E)$, so that (5.5) holds.

Conversely, suppose that f has the form (5.5). Then $f^{-1}(E) = \varphi^{-1}(E) \cup \varphi_0^{-1}(E)$ for any $E \in B(R)$ and

$$\{x(E) > 1/2\} = \varphi^{-1}(E) \subseteq \varphi^{-1}(E) \cup \varphi_0^{-1}(E) \subseteq \{x(E) \ge 1/2\}.$$
 Q.E.D.

REFERENCES

- 1. Brabec, J.: Compatibility in orthomodular posets. Čas. pěst. mat. 104, 1979, 149—153.
- 2. Dvurečenskij, A.: The Radon-Nikodým theorem for fuzzy probability spaces. Fuzzy Sets and Systems, appears.

- 3. Dvurečenskij, A.: On a representation of observables in fuzzy measurable spaces. Submitted.
- Dvurečenskij, A.: Modely fuzzy kvantových priestorov. in: Zborník PROBASTAT '89, 1989, 96—96.
- 5. Dvurečenskij, A.—Chovanec, F.: Fuzzy quantum space and compatibility. Inter. J. Theor. Phys. 27, 1988, 1069—1082.
- Dvurečenskij, A.-Long, Le Ba: On representations of fuzzy quantum posets. Submitted.
- 7. Dvurečenskij, A.-Tirpáková, A.: Sum of observables in fuzzy quantum spaces. Submitted.
- 8. Halmos, P. R.: Measure Theorey, Van Nostrand, Princeton, 1950.
- 9. Long, Le Ba: Fuzzy quantum posets and their states. Submited.
- Riečan, B.: A new approach to some notions of statistical quantum mechanics. Busefal 35, 1988, 4—6.
- 11. Sikorski, R.: Boolean Algebras. Springer-Verlag, 1964.
- 12. Varadarajan, V. S.: Geometry of Quantum Theory. Van Nostrand, New Jersey, 1968.

Authors' addresses:

Anatolij Dvurečenskij Matematický ústav SAV Štefánikova 49 81473 Bratislava

Le ba Long Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK Mlynská dolina 842 15 Bratislava

Permanent address:

Le ba Long Khoa Toán DHSP Huê Hue Vietnam

Received: 28. 2. 1990

SÚHRN

POZOROVATEĽNÉ VO FUZZY KVANTOVÝCH POSETOCH

Anatolij Dvurečenskij, Le Ba Long, Bratislava

Práca pojednáva o reprezentáciách pozorovateľných fuzzy kvantových priestorov pomocou bodových funkcií na základnom priestore a tiež študuje problém kompatibility.

РЕЗЮМЕ

НАБЛЮДАЕМЫЕ В НЕЧЕТКИХ КВАНТОВЫХ ЧАСТИЧНО УПОРЯДОЧЕННЫХ ПРОСТРАНСТВАХ

Anatolij Dvurečenskij, Le Ba Long, Bratislava

В работе исследуются предсравления наблюдаемых в нечетких квантовых частично упорядоченных пространствах с помощью точечных функций в основном пространстве, и также изучается проблема компатибильности.

