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OBSERVABLES IN FUZZY QUANTUM POSETS
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1. Introduction

A fuzzy analogue of a random variable of a classical probability space is an
observable. If (£2, &) is a measurable space and &: 2 — R, then the measurabi-
lity of & means that £~'(E)e &, S, for any Ee€ B(R), where B(R) is the Borel
o-algebra of the real line R. The mapping x: B(R)— & defined by
x(E): = £7'(E), E€ B(R), is a o-homomorphism, called an observable of &. It
is well known that there is a one-to-one correspondence [8] between random
variables of (2, &), &, and o-homomorphisms, x, of (£2, &) which is given by
the formula x(E) = £~'(E), Ee B(R). The concept of an observable as an
homomorphism is also accepted in quantum logic theory [12] as well as in some
models of fuzzy sets [10, 5].

In the present paper, we give some characterizations of observables of fuzzy
quantum posets via pointwisely defined mappings, and the compatibility pro-
blem is solved, too. These results extend those in [2, 3, 5, 7].

2. Observables

We recall [4, 9] that a couple (£2, M) is a fuzzy quantum poset if €2 is a
nonvoid set, and M is a subset of [0, 1]° such that

(i) if 1(w) = 1 for any we £2, then 1€ M;
(i) if ae M, then a*: = 1 — ae M
(iii) if 1/2(w) = 1/2 for any we £, then 1/2¢ M

@v) if {f;} = M, min(f;, fj) < 1/2, for i # j, then Uf,-) =supfie M.
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In an analoguos way as a fuzzy union, U, we define a fuzzy intersection
() a;: infa, of a sequence of fuzzy sets {a;} of M. The element a* is said to be
: i

the fuzzy complement of a fuzzy set a. Two elements a and b of M are said to
be fuzzy orthogonal and we write a L6 iffan b < 1/2. Itis evident thata L. b
iff {a>1/2}n{b > 1/2} = 0, where {a > 1/2} = {we 2: a(w) > 1/2}, etc. More-
over, we write a L b iff a < b*. It is clear that if a L b, then a Lb, and the
converse does not hold in general. In addition, ifau a* = bu b*, thena L ;b iff
alb.

It is evident that, with respect to the natural ordering < on M defined via
a < biff a(w) < b(w) for each wef2, M is a poset with the minimal and maximal
elements 0 and 1, respectively, and with an orthogonality L: a+— a', a M, such
that (i)au a* < 1,ana* > 0 for any ae M; (ii) (a*)* = a for any ae M; (iii) if
a < b, then b* < a*.

We say that a mapping x from the Borel sets B(R) of the real line R into
M is an observable of (2, M) if

(i) x(E) = x(E)* for any E€ B(R);

(ii) x(E) L x(F) whenever En F =0, E, Fe B(R);

(i) x <U E,) = \J x(E) if E,~ E, = 0 for i # j, {E} = B(R).

A simple example of an observable is a mapping x,, where a is a fixed fuzzy
set of M, defined via

avuat if0,1€E
at if0cE, 1¢E
a if0¢E, 1eE
ana* if0, 1¢E,

x,(E) =

for any E€ B(R). -

Remark. If, in the definition of x, B(R) is replaced by any Boolean
o — algebra &, then x is called an «/-observable of (£2, M). A non-void subset
A of M is said to be a Boolean o-algebra of (£2, M) if

(i) there are the minimal and maximal elements 0,, 1,eA4 such that
ana*=0,,aua' =1,forany ae 4;

(i1) with respectto 0,, 1,, L, n, and U, A is a Boolean o-algebra (in the
sense of Sikorski [11]).
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From the definition, it is immediately clear that if x is an observable, then
R(x) = {x(E): E€ B(R)} is a Boolean o-algebra of (£2, M) with the minimal and
maximal elements x(0) and x(R), respectively.

For any ae M, we put

M,={beM:bub'=ava'}, 2.1

then either M, N M, is the empty set or M, = M,. In other words, {M,: ae M}
is a partition of M.

Define
0, ={we2: a(w) # 1/2}, 2.2)
and, for any be M, put
Q,0b) = {we,: b(w) = (av a*)(w)}, * 2.3)
moreover, let
Q,: ={2,): be M }. (2.4

We recall that a ¢ — o-algebra is a nonempty system Q of subsets of a given
set X # @ such that (i) if 4€Q, then X — A€ Q; (ii) ) 4,€ Q whenever {4} is
i=1

a sequence of mutually disjoint subsets of Q.

Theorem 2.1. (i) Q, is a ¢ — o-algebra, for any ae M.

(i1) The mapping £2,(.): M, — Q, defined via (2.3) is an ortho o-isomor-
phism, i.e. it is bijective and preserves the maximal elements, complements, and
joins of any sequences of mutually orthogonal elements.

Proof. It follows from the following simple properties:

G) 2b) = Q) iffb=c, b ceM,;
Gi) Q)< Q) ifb<c, b, ceM,:
i) Q.69 = 2 Q)  beM,;
(V) 2,(6)~2(c)=0iff b Lyc, b, ce M,;
® 2(Ub)= U 26, ) = M, b, Lot for i ).
i=1

i=1
Q.E.D.
An F-state of (£2, M) is a mapping m: M — [0, 1] such that (i) m(au a*) = 1
for any ae M; (ii) m (U ai) =Y m(a) if a,Lpa fori+#j, {a} = M.

i=1 i=1
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Theorem 2.2. Let m be an F-state on M. Then the mapping y,: Q, — [0, 1]
defined via

U, (82,(b)) = m(b),  beM,,

is a probability measure on Q,..
Proof is evident from Theorem 2.1.

Lemma 2.3. Let {a,} =« M,. Then () a,e M, (

U

a,,eM,,) iff () 2.a)e 0,

n=1 n

. O .Q,,(a,,)eQ,,), and in this case .Qa<ﬁ a,,) = ﬁ 2.(a,) (.Qa O a,,) =
=1 ' n=1

- Q 2,a) - .

Proof. is straightforward. Q.E.D.
Theorem 2.4. Let x be an observable of (£2, M), then there is a unique
functiom @: 2, — R such that ¢ is Q r-measurable, and

Qu(X(E) = p~(E),  EcB(R). 2.5)

Conversely, for any Q,-measurable mapping ¢: 2, — R, where ae M, there
is a unique observable x of (£2, M) with x(R) = au a* such that (2.5) holds.

Proof. Let x be an observable. From Theorem 2.1 we conclude that
2 x(R(x)) = {Qr(x(E)): E€ B(R)} is a Boolean o-algebra of subsets of £2,,.
Due to Theorem 1.4 by Varadarajan [12], there exists a unique mapping @:
.z — R with (2.5).

The converse follows from Theorem 2.1. Q.E.D.

3.. Compatibility

A nonempty set A of M is said to be f~compatible if, for all q,, a,, ...,
a,, €4, we have (i) b,: =a,n...Nna,na,, €M, b,:=a,n...0a,Nna;, €
M; (i) b,u b, =a,n ... na,. The subset A is strongly f~compatible if 4 L A+
is f~compatible, where A+ = {a*: ae 4}.

We recall that if {a, b} is strongly f-compatible, then aua* = bu b*.
Indeed, we have a=anbuanb*, and a* = a* nbua' nb* which entail
aua' < bub'. In the same way we have b U b* < au a*. In some particular
cases, this condition is also sufficient in order that 4 be strongly f~compatible.

i
Moreover, if 1,=a,ual =a,uay =..., then la=(Ua,)u<Ua,-) =

~(0e)e(0) |
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Lemma 3.1. Leta, <a,<...<aqa,,aeMfori=1, ..., n Then{q,..., a,}

is strongly f~compatible iff
QUA =BV aG = ... =a,Ja.. (3.1)

Proof. One direction is now clear. For the second one, suppose (3.1) holds.
First of all we consider that, forany i,j, 1 <i,j < nandanyu, ve{0, 1} we have
a/ndje M, where a) = af, a} = a,. Moreover, for any iy, ..., i, | <i, ...,
i,y <nandanyj, ..., ji,,€{0, 1},

a,IGlejl ="'jk+l =1
b|=({,::ﬁ...(\d:k”= a‘L EMifj|=...=jk+|=0

k1 k41

a; ai € M otherwise,

where i=min{i,: j,=0, | <u<k+ 1}, j=max{i: j,=1, 1 <v<k+ 1}
Hence

dia..ogttudo.n(d) = d,:m .ndieM.

- Q.E.D.

Theorem 3.2. Let 4 be a nonvoid subset of M. The following two statements
are equivalent:

(i) A is strongly f~compatible.

(if) There is a Boolean o-algebra of (£2, M) containing A.

Proof. The second statement evidently entails the first one. Let now (i) hold.
Since auat =bu b for all a, be A, we have 4 = M, for each ae A. Let
o = §2,(A) = {2,(b): be A}. Then &/ is a nonempty subset of the g-o-algebra
Q,.Let{a,, ..., a,} be an arbitrary finite subset of 4. The strong f~compatibility
of A and Lemma 2.3 imply that {Q(d'n...nd"): ji, ..., j,€{0, 1}} is an
orthogonal covering of the set {£2,(a,), ... , £,(a,)}. Due to Theorem 3 by Brabec
[1], there exists a o-complete Boolean subalgebra £ of Q, containing .of.
Therefore €2, '(#) is a Boolean o-algebra of (£2, M) containing A.

Q.E.D.

Lemma 3.3. Let for a finite set {a,, ..., a,} of M the condition (3.1) hold.

Then {a,, ..., a,} is strongly f~compatible iff (") a,€ M for any nonempty subset

ieD
D of {1, ..., n}.
Proof. The proof follows from Lemma 2.3 and the observation that
{ﬂ Q). DAl, ... n}}, where a = a,, generates an orthogonal covering of
ieD
{2,(a)), ..., £(a,)}. The rest follows from the criterion of Brabec [1] and
Theorem 3.2. Q.E.D.
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4. On joint observables

In the present section, we shall consider the relation between the joint
o-observable and the f~compatibility of a system of observables.

We say that a system {/,: te T} of Boolean sub-o-algebras of a Boolean
o-algebra &/ is independent (o-independent) if, for any finite (countable) subset
acT

(Y4, #0

I<a

for any ) # 4,€ o/, and any t€a.
Let 2 =92(T) = {/\A,: Aed tea,0#acT, a< oo}, R =R(T) be

tea

the minimal subalgebra of &/ containing 2, and let .« (T) be the minimal
sub-o-algebra of &/ containing £.

Let {«/,: te T} be a system of o-independent Boolean sub-o-algebras of a
Boolean o-algebra /. We say that a system {x,: te T}, where x, is an &, — o-0b-
servable of a fuzzy quantum poset (£2, M), has a joint c-observable if there is
an &/ (T) — o-observable x of (£2, M) such that

x (/\ A,) = () x(4) @1
lea tea

for any A4,€ o/, and any finite nonvoid subset a = T, supposing that the fuzzy

set intersection on the right-hand side of (4.1) exists in M. It is clear that if the

joint o-observable exists for {x,: te T}, then it is unique.

We say that {x,: te T} is a system of f~compatible observables if U R(x)

teT

is an f~compatible set in M. It is clear that for (U R(x,) the f~compatibility and
teT
the strong f~compatibility are equivalent.

Theorem 4.1. Let {«/,: 1€ T} be a system of o-independent Boolean sub-o-
algebras of a Boolean o-algebra «/. For any e T, let x, be an .« ,-c-observable
of a fuzzy quantum poset (£2, M). Then {x,: te T} has a joint o-observable iff
{x,: te T} are f~compatible.

Proof. Let x be a joint o-observable of {x,: e T}, and denote by R(x) the
range of x. Conversely, let {x, ; 1€ T'} be f~compatible. Due to (4.1), R(x,) = R(x)
for any te T, so that {x,: e T} is a system of f~compatible observables. Due to
Theorem 3.2, there exists the minimal Boolean o-algebra A of (£2, M) contain-

ing () R(x,). We can prove that every Boolean o-algebra of (£2, M) is o-distri-

teT
butive. Since 4 is a Boolean o-algebra, the mapping x defined via (4.1) is defined
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well on 2(T). According to Sikorski [11, Theorem 37.1], this mapping may be
uniquely extended to an «(T)-c-observable of (£2, M), that is, to a joint

o-observable of the system {x,: te T}.
Q.E.D.

If, in particular, in Theorem 4.1, o/, = B(R) for any e T, we may build up
a calculus for f~compatible observables, since the following theorem holds:

Theorem 4.2. Let {x,} be a sequence of observables of (£2, M). Then the
following criteria are equivalent:.

(i) {x,} are f~compatible.
(ii)) There eists a joint observable for {x,}.

(iii) There exists a sequence {f,} of real-valued, Borel measurable functions
and an observable x of (£2, M) such that
X, =f0, nxzl, ‘ 4.2)
where f(x): E— x(f,'(E)), EeB(R).
Proof. Theorem 4.2 is a consequence of Theorem 4.1 and Theorem 6.9 by
Varadajan [12] Q.E.D.

Therefore, for f~compatible observables x and y we may define, for exam-
ple, sum and product as follows: x + y = (f 4+ g)(2), x.y = (f.g) (2), etc.

5. On representation of observables

The following result gives a characterization of observables through a
special class of fuzzy sets.

Theorem 5.1. Let x be an observable of a fuzzy quantum poset (£2, M) and
let QO be any countable, dense subset in R. Denote, for any reQ,
B.(r) = x((— 00, r)). The system {B(r): re Q} fulfils the following conditions:

()B(s) < B.(n)ifs<t, s, teQ;
(i) B.(r) = a;

reQ

(iii)(") B(r) = a*; .1

reQ

() B.(s) = B(r), reQ;

V) B(nUB(r)=a, reQ,
where a = x(R) and a* = x(0).
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Conversely, if a system {B(r): re Q} of fuzzy sets of M fulfils the conditions
(1) —(v) for some ae M, then there is a unique observable x of (£2, M) such that
B (r) = B(r) for any re Q and x(R) = a. ‘

Proof. Because R(x) = {x(E): E€ B(R)} is a Boolean o-algebra, any count-
able union of fuzzy sets of R(x) also belongs to R(x). Thereby, the first statement
of the theorem can be proved easily.

Conversely, suppose that for (€2, M) and for some ae M, a system {B(r):
re Q} c M satisfying the conditions (i) —(v) be given. Due to Lemma 3.1 and
Theorem 3.2, there exists the minimal Boolean o-algebra &/ of M containing all
B(r)’s. So, the remaining part can be proved similarly to the proof of Theo-
rem 2.3'in [7]. Q.E.D.

Now we present the main result of this section. For that, we need the
following: Let (£2, M) be a fuzzy quantum poset, and, according to [9], we
introduce

K(M) = {4 < Q: there is an ae M such that
{a>1/2}c A< {a=1/2}}.

Then by [9], K(M) is a ¢— o-algebra.
Theorem 5.2. Let x be an observable of a fuzzy quantum poset (£2, M). Then
there is a K(M)- measurable function f: £ — R such that

{x(E) > 1/2} = f~(E) < {x(E) > 1/2} (5.3)

for any Ee B(R). If g is any K(M )-measurable, real-valued function on £ with
(5.3), then {we 2: f(w) # g(w)}e K(M) and

{we Q2: f(w) # g(w)} = {x(0) = 1/2}. (5.9

Conversely, let f: 2 — R be any K(M )-measurable function. Then there is
an observable x of (£2, M) with (5.3). If y is any observable of (£2, M) with (5.3),
then x(E) L y(E)* for any Ee B(R).

Proof. Let M = M/I, be a quotient poset which has been defined in [6].
Then by [6], M is an orthomodular o-orthoposet, and ¢: M — M defined via
@(a) = a is a canonical ortho-c-homomorphism from M onto M. On the other
hand, according to the Loomis-Sikorski analogue theorem for (£2, M) [6], there
is a mapping 4 from the g-o-algebra K(M) onto M such that h(4) = a if {a >
>1/2csAc{a=>1/2}.

Let x be an observable of (£2, M). Let r,, r,, ... be any distinct enumeration
of the rational numbers in R. We shall construct sets 4,, 4,, ... in K(M) such
that

(i) h(4) = p(x(—c0, 1)), i=1,

(i) 4; < 4; whenever r; <r,.
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Indeed, it is enough to choose A, = {x((— oo, r;)) > 1/2}. Since {4,} is a

sequence of monotonne subsets of K(M), there exists () 4;, U 4, in K(M).

Anh (ﬂ A,-) =\ e(x((—o0, 1)) = ¢<x (ﬂ (— o0, r,)) = 0, we may, by

replacing 4, by 4, — ﬂAj, if necessary, assume that ﬂAj=0. Further
j . J

J
h(U Aj) = ¢(x(ﬂ (— o0, ri)>> = 1. Therefore, h(N) = 0, where N = Q — U4,
If wje define a ma;;ping f: 2> Rvia '

0 if we N
f@)={, |
inf{r;: we 4} if weN,

then f is a well-defined, K(M)-measurable function such that
h(f~'(E) = ¢(x(E)), E€ B(R). In other words, f satisfies (5.3).

Conversely, suppose that fis any K(M)-measurable, real-valued function
on £2, and let Q = {r,, r,, ...}. For any integer n > 1, we find a fuzzy set a,e M

such that {a, > 1/2} = f~'((— 0, r,)) = {a, > 1/2}. Put 1, = () (a,u a}), Ox =
= 1x. For the system {b,: n > 1} ¢ M defined via b, = a, N l"Ku 0k, we have
) b, > 1/2 s{a,> 1/2} = f7' (=0, 1)) S {a, = 1/2} = {b, = 1/2};
(i) b,uby = 1y foranyn>1;
(iii) b, < b,, whenever r, <r,,.

‘Due to Lemma 3.1, the system {b,, b,, ...} is strongly f~compatible, and, thereby
it is contained in some Boolean c-algebra of (£2," M).

If we put B(r,) = b, for any n > 1, then the system {B(r): reQ} fulfils
(1) —(v) of Theorem 5.1, consequently, there is a unique observable x such that
B(r) = x((— oo, r)) for each reQ. Hence, {x((—, r)) > 1/2} < f~'((— oo,
r)) < {x((— oo, r)) > 1/2} for any rational r, which entails the validity of (5.3)
for any Borel set E in R.

Suppose now g is any K(M )-measurable, real-valued function on £2 for
which (5.3) holds. Then we have

f<gi=Ulf<r<gt=Ulf<rin{g>n

reQ reQ
and

D={xO@O)>12}cs{f<gt={f<rn{g>rc U (=, 1} = 1/2}n

reQ reQ
255



N {x(lr, ) = 1/2} = {x(9) = 1/2} = {x(0) = 1/2}

which proves {f # g}e K(M) and (5.4).
Let now y be any observable of (£2, M) with (5.3). Then

{NE)" > 1/2} = f7(E) = {¥(E)* 2 1/2} and {x(E) N y(E) > 1/2} =
={x(E) > 1/ n{y(E) > 1/} = fTU(E)NfT(E) =0

which yields x(E) Ly(E)"* for any E€ B(R). Q.E.D.

If an observable x of (£2, M) and a K(M )-measurable, real-valued function
S on £ satisfy (5.3), we shall write x ~ f.

Proposition 5.3. Let x ~ f, fori = 1,..., n. Then f,, ..., f, are f~compatible
in K(M).

Proof. According to Brabec [1], it is necessary to show that, for any E,, ..

o'y

E,eB(R), () f'(E)e K(M). But this follows from the following observation
i=1

F(0E)> 1) = e > 1= (Vs

c Q (x(E) > 1/2} = {x (O. E,-) > 1/2}. QED.

Theorem 5.4. Let x be an observable of (£2, M) and ¢: 2, — R be a unique
Q.ry-measurable function corresponding to x via (2.5). Let f be any K(M)-
measurable, real-valued function. Then x ~ fiff

p(w) if we R,

0 = { (5.5)

o(@) if we2— Q,,
where @, is any mapping from £ — €, into R.
Proof. Let x ~ f, put @, = 192 — Q,,, and define ¢ via (2.5). Then {x(E) >
>1/2} = ¢ Y(E) < fY(E) € ¢ "(E) U {x(E) = 1/2} which gives ¢~ '(E) <
S (E)N Qur) S 97 (E), so that (5.5) holds. ‘
Conversely, suppose that f has the form (5.5). Then f~'(E) = ¢ '(E) U
U ¢ '(E) for any Ee B(R) and

{(x(E) > 1/2} = p""(E) < 9~ (E) U 5 \(E) < {x(E) > 1/2). Q.E.D.
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SUHRN

POZOROVATELNE VO FUZZY KVANTOVYCH POSETOCH
Anatolij Dvurecenskij, Le Ba Long, Bratislava

Praca pojednava o reprezentaciach pozorovatelnych fuzzy kvantovych priestorov pomocou

bodovych funkcii na zdkladnom priestore a tieZ $tuduje problém kompatibility.
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PE3IOME
HABJIIOJAEMBIE B HEYHETKHUX KBAHTOBBIX YACTUYHO YIIOPSAOUYEHHbBIX
IMMPOCTPAHCTBAX
Anatolij Dvurecenskij, Le Ba Long, Bratislava
B pabote uccnenyloTcs mpeacpaBieHHst HaGMIONAEMBIX B HEYETKHX KBAHTOBBIX YaCTHYHO

YNOPSIO4YEHHBIX NPOCTPAHCTBAX C MOMOLIbIO TOYEYHBIX QYHKUMIA B OCHOBHOM NpPOCTPAHCTBE, U
TaKxe u3yyaercs npobieMa KoMnaTHOHILHOCTH.
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