

Werk

Label: Article **Jahr:** 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59|log23

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVIII—LIX

REMARK ON PROPERTIES OF REAL VALUED NON NEGATIVE FUNCTIONS ON SEMIRINGS

PETER VRÁBEL, Nitra

Some authors construct a notion of an integral coming out from more general functions than a measure, at the same time these functions are defined on various classes of sets. A survey of such approaches can be found in [2]. While the mutual connection of such properties as monotony (m), additivity (ad), finite additivity (fad), subadditivity (sa), finite subadditivity (fsa), valuation (v) and superadditivity ($\mu(A \cup B) \ge \mu(A) + \mu(B)$, $A \cap B = \emptyset$; (sp)) on a ring is trivial, the situation on a semiring is a little different. In this paper we consider a semiring as a non empty class of sets \mathcal{P} closed under the formation of intersections, which satisfies the condition

(a) if $A, B \in \mathcal{P}$ and $A \subset B$ then there are sets $C_i \in \mathcal{P}$, i = 0, 1, 2, ..., n such that $A = C_0 \subset C_1 \subset ... \subset C_n = B$ and $D_i = C_i - C_{i-1} \in \mathcal{P}$, i = 1, 2, ..., n (see [1]).

By μ we shall always denote a real non negative function defined on a semiring (although in Theorem 1 and Proposition 4 non-negativity is not essential).

The following theorem is a basic assertion concerning systemization of the above mentioned properties on a semiring.

1. Theorem. If a function μ is additive on a semiring \mathcal{P} , then μ is finitely additive.

Proof. Let some additive function μ on a semiring \mathscr{P} be not finitely additive. Let m be the smallest positive integer such that there are sets A, $A_i \in \mathscr{P}$, i = 1, $2, \ldots, m$, A_i are pairwise disjoint and $A = \bigcup_{i=1}^m A_i$ that $\mu(A) \neq \sum_{i=1}^m \mu(A_i)$. Evidently m > 2. There are sets $C_0, C_1, \ldots, C_r \in \mathscr{P}$ such that $A_1 = C_0 \subset C_1 \subset \ldots \subset C_r = A$, $D_j = C_j - C_{j-1} \in \mathscr{P}$, $j = 1, 2, \ldots, r$. Since $A_1 \cup D_1 \cup D_2 \cup \ldots \cup D_j = C_j \in \mathscr{P}$, j = 1, $2, \ldots, r$, we obtain $\mu(A) = \mu(A_1) + \sum_{j=1}^r \mu(D_j)$. Analogously $\bigcup_{k=1}^r (A_i \cap D_k) = \sum_{j=1}^r \mu(D_j)$.

 $=A_i \cap C_j \in \mathscr{P}, i=2,3,\ldots,m, j=1,2,\ldots,r$ and $\mu(A_i)=\sum_{j=1}^r \mu(A_i \cap D_j)$. Since for every $j=1,2,\ldots,r$ $D_j=\bigcup_{i=2}^m (A_i \cap D_j)$, it follows from the definition of the number m that

$$\mu(D_j) = \sum_{i=2}^m \mu(A_i \cap D_j) \text{ for every } j = 1, 2, \dots, r.$$

Utilizing the previous knowledge we obtain $\sum_{i=1}^{m} \mu(A_i) = \mu(A_1) + \sum_{i=2}^{m} \sum_{j=1}^{r} \mu(A_i \cap D_j) = \mu(A_1) + \sum_{j=1}^{r} \sum_{i=2}^{m} \mu(A_i \cap D_j) = \mu(A_1) + \sum_{j=1}^{r} \mu(D_j) = \mu(A)$ and this is the contradiction.

- 2. Remark. If we replace the condition (a) from the definition of the semiring \mathcal{P} by the condition
- (a)' if $A, B \in \mathcal{P}$, then there are pairwise disjoint sets $E_i \in \mathcal{P}$, i = 1, 2, ..., n such that $B A = \bigcup_{i=1}^{n} E_i$ (see [2]), then an additive function μ on thus defined semiring is not necessarily finitely additive. (Here, in fact, the definition of a semiring is weaker, as the sets $C_i = A \cup \left(\bigcup_{k=1}^{i} E_k\right)$ need not belong to \mathcal{P} .)

Let $V = \{ad, fad, sa, fsa, v, sp, m\}$.

3. Corollary. If a function μ is additive on a semiring \mathcal{P} , then μ has every property from the set V.

Proof. Let $\mathscr{S}(\mathscr{P})$ be the ring generated by the class \mathscr{P} . Let us put $\bar{\mu}(E) = \sum_{i=1}^{n} \mu(E_i)$ for every $E \in \mathscr{S}(\mathscr{P})$. Then the function $\bar{\mu}$, which is an additive extension of the function μ , has all the properties from the set V.

4. Proposition. Let a function μ be a valuation on a semiring \mathscr{P} and $\mu(\emptyset) = c$. Let $A, A_i \in \mathscr{P}, i = 1, 2, ..., n, A_i$ be pairwise disjoint and $A = \bigcup_{i=1}^n A_i$. Then it holds

(b)
$$\mu(A) + (n-1) c = \sum_{i=1}^{n} \mu(A_i)$$
.

Proof. If for every $i = 2, 3, ..., n \bigcup_{k=1}^{i} A_k \in \mathcal{P}$, then the equation (b) is true. Let μ be a valuation on \mathcal{P} and let the equation (b) be not true for every $A \in \mathcal{P}$. Let us consider a positive integer m and sets $C_i(D_i)$ analogously as in the proof

of Theorem. Then for every $i=2, 3, \ldots, m$ $\mu(A_i)=\sum_{i=1}^r \mu(A_i \cap D_i)-(r-1)c$ and for every $j = 1, 2, ..., r \mu(D_j) = \sum_{i=2}^{m} \mu(A_i \cap D_j) - (m-2) c$. Using the previous relations we obtain

$$\sum_{i=1}^{m} \mu(A_i) = \mu(A_1) + \sum_{i=2}^{m} \left(\left(\sum_{j=1}^{r} \mu(A_i \cap D_j) \right) - (r-1) c \right) = \mu(A_1) +$$

$$+ \sum_{j=1}^{r} \sum_{i=2}^{m} \mu(A_i \cap D_j) - (m-1) (r-1) c = \mu(A_1) + \sum_{j=1}^{r} (\mu(D_j) + (m-2) c) -$$

$$- (m-1) (r-1) c = \mu(A) + rc + (m-r-1) c = \mu(A) + (m-1) c$$

and this is the contradiction.

- 5. Corollary. If a function μ is a valuation on a semiring \mathcal{P} , then μ is finitely subadditive.
- **6. Proposition.** If a function μ is superadditive on a semiring \mathcal{P} , then μ is monotone.

Proof. Let A, B, C_i , D_i be sets in (a). Then $\mu(B) \ge \mu(D_n) + \mu(C_{n-1}) \ge \mu(D_n)$ $\geq \mu(D_n) + \mu(D_{n-1}) + \mu(C_{n-2}) \geq \ldots \geq \mu(A) + \sum_{j=1}^n \mu(D_n).$ A subadditive function μ on a semiring $\mathscr P$ is not necessarily finitely subad-

ditive.

 $\{c, d\}, \{a, b, c, d\}\}$. Let us define a function μ on the semiring $\mathscr P$ as follows $\mu(\emptyset) = \mu(\{a\}) = \mu(\{a, b\}) = \mu(\{a, c\}) = \mu(\{a, d\}) = 0$ and $\mu(A) = 1$ for every other set A in \mathcal{P} . Then the function μ is subadditive but it is not finitely subadditive.

We can represent the systemization of the properties from the set V of a real valued non negative function defined on a semiring by the following diagram $m \leftarrow sp \leftarrow (sp \text{ and } sa) \leftrightarrows ad \leftrightarrows fad \leftrightarrows (sp \text{ and } v) \leftrightarrows (v \text{ and } \mu(\emptyset) = 0) \rightarrow v \rightarrow fsa \rightarrow sa.$ A property x implies a property y if it is possible to pass by arrows from x to y.

REFERENCES

- 1. Halmos, P. R.: Measure theory. Van Nostrand, New York 1950.
- 2. Neubrunn, T.-Riečan, B.: Miera a integrál. Veda, Bratislava 1981.

Author's address:

Received: 28. 2. 1990

Peter Vrábel Katedra matematiky, Pedagogická fakulta Saratovská 19 949 74 Nitra

РЕЗЮМЕ

ЗАМЕТКА О СВОЙСТВАХ ДЕЙСТВИТЕЛЬНЫХ НЕОТРИЦАТЕЛЬНЫХ ФУНКЦИЙ НА ПОЛУКОЛЬЦАХ

Петер Врабел, Нитра

В статье систематизированы взаимоотношения свойств действительных неотрицательных функций определенных на полукольцах.

SÚHRN

POZNÁMKA O VLASTNOSTIACH REÁLNYCH NEZÁPORNÝCH FUNKCIÍ NA POLOOKRUHOCH

Peter Vrábel, Nitra

V práci sú systemizované vlastnosti nezáporných reálnych funkcií definovaných na polookruhoch.