#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1991
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59 |10g20

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

LVIII—LIX

QUASICONTINUOUS SELECTIONS
FOR ONE-TO-FINITE MULTIFUNCTIONS

IVAN KUPKA, Bratislava

»

Key words. Multifunction, selection, quasicontinuous.

Abstract. The aim of this paper is to show that we can guarantee the existence of a quasicon-
tinuous selection for one-to-finite quasicontinuous multifunctions defined on spaces where an
one-to-finite continuous multifunction need not have a continuous selection.

1. Introduction

Many authors have studied the problem of the existence of continuous
selections for continuous multifunctions. This research was started by Michael
[5] who proved continuous selection theorems for l.s.c. multifunctions with
closed convex values in Banach spaces.

In general, if a continuous multifunction F: X — Y has nonconvex compact
values, or even finite ones, then F need not have a continuous selection. In [1]
Carbone gives an example of a continuous multifunction F from a circle C onto
the boundary of Mobius band such that, for each x in C, the set F(x) has exactly
two points and F has no continuous selection.

The reason for proving quasicontinuous selection theorems when we can-
not prove the continuous ones is a relatively good connection between the
continuity and quasicontinuity in spite of the generality of the latter. More
information about quasicontinuity can be found in the survey paper by Neu-
brunn [7].

First quasicontinuous selection theorems were proved in 1987 by Matejdes
([4]). The results and the ideas of the present paper are different.
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2. Preliminaries

In what follows, X and Y will be topological spaces.

A subset B of X is said to be semiopen if there exists an open set G such that
G < B < cl G or, which is equivalent, B < cl (int B) ([3])

Int B and cl B denote the interior and the closure of the set B respectively.

We will use the following properties of semiopen sets ([3], [6]):

1. The union of any family of semiopen sets is semiopen.

2. The intersection of an open set and a semiopen one is semiopen.

3. A set Sis semiopen if and only if S = (int.S) U B where B is a subset of
the boundary of int S.

Levine in [3] defined a function f: X — Y to be semi-continuous if f~(G) is
semiopen for any open subset G of Y. Kempisty in [2] introduced the notion of
quasicontinuous function. A function f: X — Y is said to be quasicontinuous at
xe X if, for any open set V such that f{x)e V and any open U such that xe U,
there exists a nonempty open set W < U such that f{W) < V. If f is quasicon-
tinuous at each point x € X it is said to be quasicontinuous in X. A.Neubrunnova
in [8] proved that a function f: X — Y is semi-continuous if and only if it is
quasicontinuous.

We say that a set S is a semineighbourhood of a point x if there exists a
semiopen set A such that xe 4 < S holds. It is easy to see (using (2) and (3)) that
a function f: X — Y is quasicontinuous if and only if for each x in X and for each
open G < Y such that f{x)e G the set f~(G) is a semineighbourhood of x.

Now we give several definitions of continuity of multifunctions. If F: X - Y
is a multifunction then for subsets 4, V|, V;, ..., V, of Y we denote

F~(A)={x: A(x)n A # @}, F(4) = {x: F(x) = A} and
F-(V, ..., V)={x:Fx)nV,#0i=1,2,..., n}.

A multifunction F: X — Y is said to be upper (lower) semicontinuous at a
point ze X if for any open V such that F(z) = V(F(z) n V # () there exists an
open set U containing z and such that F(t) c V(F(t)n V # 0) for any te U. F
is said to be upper (lower) semi-continuous if it is upper (lower) semi-continuous
at any ye X. ‘

By [7], a multifunction F: X — Y is said to be upper quasicontinuous —
briefly u-quasicontinuous (lower quasicontinuous — briefly I-quasicontinuous)
at a point x € X if for any open set V containing F(x) (for any point z from F(x)
and for any neighbourhood ¥V containing z) and any neighbourhood U of x,
there exists a nonempty open set W < U such that F(t) = V(F(t)n V # 0) for
any te W. If Fis u-quasicontinuous (l-quasicontinuous) at any z in X, then it is
said to be u-quasicontinuous (I-quasicontinuous). A multifunction F: X —» Y is
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u-quasicontinuous (l-quasicontinuous) if and only if for any open set G the set
F*(G) (F~(G)) is semiopen (see [7]).

To obtain a quasicontinuous selection theorem we will need the following
notion of generalized continuity for multifunctions: A multifunction F: X —» Y
is said to be strongly lower quasicontinuous at a point z in X if for any finite
collection {V}, V;, ..., V,} of open subsets of Y such that F(z)n V;# 0 i =1,
2,...,ntheset F~(V,, V,, ..., V,) is a semineighbourhood of z. If F is strongly
lower quasicontinuous at any x in X than it is said to be strongly lower
quasicontinuous.

We shall denote by u.s.c., l.s.c., u.q.c., l.q.c. and s.l.q.c. the upper semicon-
tinuity, the lower semicontinuity, the upper quasicontinuity, the lower quasi-
continuity and the strong lower quasicontinuity. In this paper a multifunction
F is said to be continuous (quasicontinuous) if it is u.s.c. and Ls.c. (u. q.c. and
s.l.q.c.). .

It is easy to see that a multifunction F: X — Y is s.l.q.c. if and only if the
set F~(W, V;, ..., V,) is semiopen for every finite collection {V;, V;, ..., V,} of
open subsets of Y. We can see that every l.s.c. multifunction is s.l.q.c.. The
contrary is not true. For example every quasicontinuous function is s.l.q.c. but
it need not be l.s.c..

In what follows card4 will mean the number of elements of a finite set 4.
Let F: X — Y be a multifunction. Let V' be an open subset of X. The symbol S(F,
V) will denote the set of all quasicontinuous functions g: ¥ — Y such, that for

each vin V g(v) is an element of F(v), i.e. the set of all quasicontinuous selections
of Fon V.

3. Quasicontinuous selection theorems

Lemma 1. Let X be a topological space. Let Y be a Hausdorff topological
space. Let n be a positive integer. Let F: X — Y be a s.l.q.c. multifunction with
exactly n values for each x in X. Then for every nonempty open subset U of X
there exists a nonempty open subset W of U such, that the set S(F, W) is
nonempty.

Proof. Let U be a nonempty open subset of X. Let us take an arbitrary point
t from U. Let F(¢t) ={a,, ..., a,}. There exist nonempty open sets V|, ..., V,
which are pairwise disjoint and such thata,e V, i =1, 2, ..., n. Since Fis s.l.q.c.
there exists a semineighbourhood S of the point ¢ such that

(1) Foreach zin SF(z)n V,#0fori=1,2,...,n.

Let us denote W = int (S n U). W is a nonempty open subset of U. Let us
define a function g: W — Y as follows:

for each win W g(w) = Flw)n W,
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By (i), for every s from W, card F(w) n V; = 1| hods. To prove that S(F, W) is
nonempty it suffices to show that g is quasicontinuous.

Let G be an open subset of Y. Theng (G) =g (Gn W) = {xe W:fori =1,
2,...,nFx)nV,#0and Fx)n(Gn V) #0}=WnF (GnV, VW, ..., V).
Since F is s.l.q.c., the set g ~(G) is semiopen. Therefore g is an element of S(F,
W).

Lemma 2. Let X be a topological space. Let Y be a Hausdorff topological
space. Let F: X —» Y be a multifunction such that, for every nonempty open
subset W of X, there exists a nonempty open subset D of W such that S(F,
D) # 0. Then there exists an open subset U of X dense in X and such that S(F,
U) is nonempty.

Proof. Let Z = {(g, D): D is a nonempty open subset of X and g e S(F, D)}.
We define a partial order < on Z as follows:

(h, A) < (g, B) if and only if 4 = B and for each a€ 4 g(a) = h(a) holds.

Let S < Z be a linearly ordered subset of Z. We will show that S has an
upper bound in Z. Let us define an ordered pair (p, P)eZ as follows:

P= | ) Dandp: P— Yisa function such, that for every x e Pp(x) = g(x) for
(g. D)eS
each g such, that there exists (g, D)e S and xe D. It is easy to see that pis a

function and that p is a selection for F on the set P.
Let U be an open subset of Y. From the definition of p it follows that

p(U)= ) g (U)sop (U)is a semiopen set.
(g. D)eS
Therefore p is quasicontinuous and (p, P) is an element of Z.

Moreover we can see that for every (h, V)eS (p, P) > (h, V) holds, so S
has an upper bound. By Zorn’s lemma the set Z has at least one maximal
element. Let us denote one of these maximal elements by (m, M). We will prove
that the open set M is dense in X.

Suppose, to the contrary, M is not dense in X. Then the set W = X — cIM
would be a nonempty open subset of X. Under this assumption there exists a
nonempty open subset G of W and a function h: G — Y such that (4,G)e
€ S(F,G).

Let us denote C = M U G. Let us define a function ¢: C < Y as follows:

c(x) = m(x) for each x in M

c(x) = h(x) for each x in G.

It is easy to see that ce S(F, C), since if U < Y is open then ¢ (U) =
=m~(U)u h™(U). Therefore (¢, C)e Z and we see that (¢, C) > (m, M) holds.
This is a contradiction. So M must be dense in X. Moreover m is an element of
S(F, M). This completes the proof.

210



Lemma 3. Let X and Y be topological spaces. Let F: X — Y be an u.q.c.
multifunction with compact values. Let there exist a dense open subset U of X
and a function g: U < Y such that ge S(F, U). Then F has a quasicontinuous
selection on X.

Proof. Let us denote Z = X — U. We will show that the following assertion
is true.

(a) Foreach zin Z there exists an element y, € F(z) such that for every open
neighbourhood V of y, and for every open neighbourhood G of z there exists a
nonempty open subset W = G n U such that g(W) < V.

Suppose that, contrary to what we wish to prove, there exists z € Z such that
for every y € F(z) there exist open sets V, = Y and U, = X and a dense subset H,
of U,n U such that

(i) yeV,,zeU,and g(H,)n V, = 0.

Since g is quasicontinuous on U and H, is dense in U n U, we have g~ (¥;) n
NU,nU)=0.So

() gU,nU)nV,=0.

The system of sets ¥, mentioned above forms a cover of F(z). There can be
selected a finite cover {V], ..., V,,} of F(z) from this cover. Let U,, ..., U,, be the
corresponding open neighbourhoods of z such that

(i) g(UnU)nV.=0fori=1,..., m.

Let us denote

iv) S=UnUn..nU,NnF* (U V,-)
i=1

S is a nonempty semiopen set, since the set U is dense and open and the rest of
the intersection is a nonempty semiopen set containing z.

By (iv) we obtain g(S) = () ¥ but by (iii) for every ¢ in S and for every
i=1
i=1,...,m g(t) n V;= 0 holds. This is a contradiction. Therefore the assertion
(a) is true.

Let us define a function A: X — Y as follows;

h(z) = g(2) for any ze U

h(z) =y, for every ze X — U where y, is an element of F(z) men-
tioned in (a).

The function 4 is quasicontinuous at each z e U since if V' < Y is open and
h(z)e V then zeg= (V) < h™ (V). The set g~ (V) is semiopen therefore A~ (V) is a
semineighbourhood of z. Using (a) we can see that 4 is quasicontinuous also in
each point z of X — U. Therefore he S(F, X). This completes the proof.

Before using Lemmas 1, 2, 3 as a proof of Theorem 1 we need the following
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Lemma 4. Let X, Y and F be as in Lemma 1. Then F is u.q.c..

Proof. Let V < Y be an open set. We shall prove that for every xe F* (V)
the set F*(V) is a semineighbourhood of x, which implies that F*(V) is
semiopen.

So let xe F*(V). Let F(x) = {y, ..., yx}. Since Y is Hausdorff, there exist
open disjoint sets V|, ..., ¥, such that fori=1,...,n y,e ¥V,and V,< V. Let us
denote S=F~(V;, ..., V,). We can see that xe S and S is semiopen. But
S < F*(V) holds since the sets V; are disjoint and for every se S card F(s) = n.
Therefore the set F*(V) is a semineighbourhood of X. Q.E.D. '

Using Lemmas 1, 2, 3, 4 we can establish the following

Theorem 1. Let X be a topological space. Let Y be a Hausdorff topological
space. Let F: X — Y be a s.q.l.c. multifunction with exactly n values for each x
in X. Then F has a quasicontinuous selection f> X — Y.

Now we will use the previous results to obtain a selection theorem for
one-to-finite quasicontinuous multifunctions.

Theorem 2. Let X be a Baire topological space. Let Y be a Hausdorff
topological space. Let F: X — Y be a quasicontinuous multifunction such that,
for every x in X, the set F(x) is finite. Then F has a quasicontinuous selection
ffX-7Y.

Proof. Let us define for every positive integer i sets B; = {x € X there exists
an open neighbourhood P of x such that for every ¢ in Pcard F(¢t) = i} and

L; = {xe X: card F(x) < i}. Let us denote U = | ) B,. Note that B, are open and
i=1
pairwise disjoint.

First let us show that X — U is nowhere dense. Suppose, to the contrary,
that the set Z = X — Uis not nowhere dense. Denote G = intZand Z, = Zn L,
fori=1,2,...

The open set G is not of the first category, so the set Z is not of the first
category.

Z = | ) Z; holds. Let n be the first integer such that int(cl Z,) # 0. Let us
i=1

denote H = int(clZ,) — cl Z, _,. Then H is a nonempty open subset of G. Note
that the set Z, is dense in H.

Since HN B, =0 and HN Z,_, = 0, there exists a point he H such that
card F(h) = k and k > n.

Let F(h) = {y,, ..., yx}. There exist open disjoint subsets ¥}, ..., ¥, of Y such
thaty,eV,i=1,...,k. Letusdenote W = F~(V,, ..., ;) n H. Wis a nonempty
semiopen subset of H and we can see that, for every ¢t from W, card F(¢) > k > n.
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But this implies W N Z, = 0. This is a contradiction with the density of Z, in H.
We have just proved that Z is nowhere dense. Thus, U is dense in X. To
complete this proof it suffices, by Lemma 3, to show that S(F, U) is nonempty.
By Theorem 1 for every ie N such that B, # Q there exists a function
g€ S(F, B,). Let us define a function g: U — Y as follows:
g(t) = g,(¢) if and only if te B,. The function g is a selection of Fon U. Let

V be an open subset of Y, theng~ (V) = () g~ (V) n B, = () & (V) n B, which
i=1 i=1

is a semiopen set since B; are open. Thus, g is quasicontinuous and ge S(F, U).

Q.E.D.

Acknowledgment. The author wishes to thank the referee for his valuable
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SUHRN

KVAZISPOJITE SELEKTORY PRE KONECNOHODNOTOVE MULTIFUNKCIE
I. Kupka, Bratislava

V ¢lanku sa dokazuju vety o existencii kvazispojitych selektorov pre kvazispojité multifunkcie
s koneénymi hodnotami v priestoroch, v ktorych spojité multifunkcie nemusia mat spojité selektory.
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PE3IOME

KBA3MHEINPEPbIBHBIE CEYEHUSA 11 MHOTO3HAUYHbIX OTOBPAXXEHUM
C KOHEYHbIMH 3HAYEHUAMMU

W. Kynka, Bpatucnasa
B cratbe moka3aHbl Teopembl 00 CylIeCTBOBAHHH KBa3WHENPEPBIBHBIX CEYEHMH MHOro3-

Ha4YHbIX 0T06pa)l(CHHﬁ C KOHCYHbIMHM 3HAYCHHUSMH B NPOCTPAHCTBAX, B KOTOPBIX HEMNPECPBLIBHbIC
MHOTrO3HA4HbIC OTOGPaKCHH’I HE NOJIbXXHbI HMETb HENPEPLIBHbIEC CCYCHHSA.
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