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A POSTERIORI ERROR ESTIMATE OF APPROXIMATE SOLUTIONS
TO A NONLINEAR ELIPTIC BOUNDARY VALUE PROBLEM

JURAJ WEISZ, Bratislava

Abstract. The paper deals with a computable a posteriori error estimate of
approximate solutions to the nonlinear elliptic boundary value problem with the
Dirichlet boundary condition

-y 5@ (a(x, Vu)) + g(x, u) = f(x) in £,

i=1 0OX;

ulan= 0.

The convergence of the presented error estimate to the true error is proved.
The computation of the error estimate requires the computation of a finite
system of linear algebraic equations in each step.

0. Introduction

This paper deals with an a posteriori error estimate of the error of the
approximate solution to the nonlinear elliptic boundary value problem with the
homogeneous Dirichlet boundary condition

2
=3 2 ax, Vi) + gx, w) = f(x) in 2
i=1 axi . (1)
Ulag=10

2
The linear cases a(x, t,, ,) = Y. a;(x) ¢, i=1, 2, g(x, ) =0 and g(x,

j=1
1) = ay(x) t, a, > 0 for two-dimensional problems have been studied in [4], [5],
[8]. A special nonlinear case (with linear main part) for one-dimensional pro-
blems has been studied in [7]. However the method of [7] cannot be straight

generalized for two-dimensional problems. The mildly nonlinear case a,(x, ¢,,

189



t,)=t,i=1,2, g(x, t) = g(t) for two-dimensional problems has been studied
in [9]. This paper deals with the general case. We shall show that the presented
error bound can be made arbitrarily small for a sufficiently good approximation
of the exact solution. Our error bound can be computed by solving a finite
system of nonlinear (Theorem 2) or linear (Theorem 3) equations.

The paper consists of four sections. The first section contains basic nota-
tion. The aim of the second section is to prove Proposition 1, which is the basis
of our error estimates. The third section deals with the construction of the dual
problem. Our a posteriori error estimates (based on methods for approximate
solution of the the dual problem) are derived in the last section of the paper.

1. Notation

In the sequel we shall adopt the following notation: If B is a Banach space,
B’ denotes its dual and (., .z denotes the duality pairing between B” and B. If
A: B— R is a functional then #*: B’ — R denotes its conjugate functional

B*(b') = sup Kb', b)p — B (b))}

If B, C are Banach spaces then L(B, C) denotes the space of all linear
bounded operators from B to C with the usual topology and 4’ L(C’, B’)
denotes the transpose of 4 € L(B, C) defined by {(A'c’, b)z = {c’, Ab)for be B,
¢’e C’. The norm in L(B, C) will be denoted as usual | . ||, ¢)-.

0 < R*denotes a simply connected bounded domain with polygonal boun-
dary 02, H denotes the Lebesgue space L,(£2), endowed with the scalar product

(u, v) =J uvdx and with the norm |u|, = (4, u)'">.H denotes the space
. 2
L,(£2) x L(£2) endowed with the scalar product [u, v] = [(¥,, w,), (v, V)] =

= f u,v, + u,v, dx and with the norm [u] = [u, u]'?. H and H are supposed to
n

be identified with their duals (using the Riesz’s representation).
V and U are subspaces of the Sobolev space W' %(£2):
V=W:%2)={ve W"?=(2)|v]on = 0 in the sense of traces},

U={ve W" () j vdx = 0}.
Q
Both U and V are endowed with the inner product
2
o=y | 224
i=1 Ja Ox; Ox;
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and with the norm ||u || = ((u, w))'?. U,, n=1, 2, ... denotes a sequence of
finitedimensional subspaces of U and P,e L(U, U,), n = 1, 2, ... the sequence of
corresponding orthogonal projectors. We suppose that the sequence U,, n = 1,
2, ... satisfies the properties

U,cU,,,,n=1,2,...,

VveU:lim | Pv—v]| =0.

Finally we give some definitions of operators: AeL(V, H), Av=n,

VeL(V, H), Vv =<§v_, _31), Le L(U, H), Lv =<_@_ i”_)

x, Ox, ox, 0Ox,
JeL(U, U’),J =L L, (Jis the duality operator see e.g. [GGZ-Chapter III]),
L,epL(, U),lLyv=v,J,eL(U,, U, J,=1JI, LelLU, H),L, =LI,

X|
ReL(H, H), Rl = -(J I(t, x,) dt,0>, where [=17in €2, [=0 in R*— Q.
0

Clearly, <V’ RI, v}, = {A'l, v), = J lvdx, ve V.
n

2. Formulation of the problem

We suppose that fe L,(£2) and that the functions g;: 2x R* > R, i=1, 2,
g: 2x R — R satisfy the Caratheodory conditions and the following growth
conditions:

There exist goe L,(£2), B, ¢ > 0 such that

lg(x, 1)| < c(go(x) + | ¢|P) for all e R and for almost all xe £,
there exist g;e L,(£2), ¢; > 0 such that

la(x, t,, t,)| < c(gx) + | t,| + | t,]) for all (¢,, t,) € R? and for almost all xe £,
i=1,2.

We suppose that for almost all x € £2 the functiong,: R — R, g () = g(x, t)
is an increasing and surjective function of ¢, satisfying g(x, 0) = 0. The functions
a;, i =1, 2 are supposed to be such that the operator 4;: H->H’' =H

Ay(py, py) = (a,(., P15 Do), Ao, P15 P2))

is strongly monotone: there exists m > 0 such that
[4op — Asq, p—al 2 m[p—qF,  p,qeH,
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lipschitzian: there exists M > 0 such that
[4op — 4q]l, < M[p—q] p,qeH,
and potential:

A, is a G-derivative of some functional &,.
Remark 1. Conditions which guarantee properties formulated above can be
found e.g. in [3—Chapter III].
The operator T: V- V’,

' <TW’, U>V = <V/A0VWa U>V + J. g(x’ W(X)) U(X) dx
n
is strongly monotone (and thus coercitive) and potential and thus [3—Theorem
I11..4.1.] there exists solution to problem
ueV,

)

2

YoeV: (Tu, vy, = ) I a(x, Vu)aggdx+J g(x, uyvdx = ffv dx.
Q i n n

iz X;

(u is the weak solution to problem (1)). The solution is unique since 7T is strongly
monotone. This solution is characterized by

uev, F(u) < F(v), YveV,
where # : V — R is the potential of problem (1) defined by

F(0) = Fo(Vo) +j(v) — qu dx, 3)

where

1
Fo: H- R, #(p) = f [4otp, pl dt,
0

v(x)
Y H R,j(v)=J‘J‘ g(x, t) dt dx.
aldo

Both #, and j are convex continuous functionals with G-derivatives %, j’

Fopdl=[op.al, (@), W), = Lg(-, o) wdx.

Remark 2. A minimizing sequence of %, ie. a sequence u,e V,n= 1,2, ...
with the property u, — u in V, can be constructed e.g. by the Ritz method (see
[3 — Theorem I11.4.3.]). Our aim is to construct a computable upper bound of
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| u, — u|. It is natural to require that the constructed error bound tends to zero
for any minimizing sequence of &#. The following proposition is the basis for

such estimates.
Proposition 1. Let u, # be defined by (2), (3). Then

YoeV: ||u—v|? sz(ﬁ(v) — F ().
m

Proof. From (2) and from [3-Lemrﬁa I11.4.11] it follows that u is the unique
minimizing point of the functional

Fy(v) = Fy(Vo) — CA'(f — g(., w), v).
The convexity of j implies
F(0) — F ) = F,(Vo) +j(v) — KAf, v) — Fo(Vu) — j(u) + CAf, uy 2

> Zy(Vv) — #,(Vu) + J‘ g, ) —wdx+ Af,u—v)=
o]

= F,(Vv) — #,(Vu)
and from [3-Proof of Theorem I11.4.11] we have

m
Z,(v) = F,(u).2 2 lu—v]*. |

Corollary 1. Let u, # be defined by (2), 3) and u,eV,n=1,2,... be a
minimizing sequence of #. Let d,e R,n = 1, 2, ... be a sequence of real numbers
satisfying the property

d,<Fu,n=12, ..,
@
d,— Fu).
Then

Nty — ul? < 2 (F () — d) 0.
m

Proof. It suffices to use Proposition 1, the continuity of # and (4). B
As mentioned in Remark 2, a minimizing sequence of # can be construc-
ted. Our problem is to construct a sequence d,e R, n = 1, 2, ... satisfying (4).
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3. Dual problem

In this section we shall construct the dual functional of & i.e. the functional
%: V - R satisfying

sup %(v) = inlf/' F(v).

veV

Values of % (or more exactly their lower approximations) will be used in the
last section of the paper as d,’s. '

Functional & can be written in the form
Z (v) = F(v) + G(Av)
with

F: V- R, Fo = %,(Vv) — va dx, Ae L(V, H), Av = v,
Q

P
G: H- R, G(p) =J. f g(x, t)dr dx.
2 Jo
From [1-Chapter III] follows that the functional #: H - R

Z(p) = —F*A'p) — G*(—p)
satisfies
sup Z(p) < inf & (v). (5)
peH veV

Later (Lemma 3) we shall see that
sup £(p) = inf #(v) (6)
pPe H veV

holds. Since we are interested only in the value sup £ (p), we can slightly modify
peH
the definition of &:

Z(p) = —F*(—A’p) — G*(p).
Let us compute F*, G*. ‘
1
Lemma 1. F*(v') = —inlt,‘ {J [A4otVv, Vv] dt — J‘fv dx — (', v),,}, veV.
vE 0 n
Proof follows immediately from the definition of F and from the definition

of the conjugate functional. [l
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Lemma 2. Let us denote g.: R — R
g.(t) = g(x, 1).
Under conditions on g formulated in Section 2 it holds
p(x)
G*(p) =L '[) g7 '(s) ds dx, peH.

Proof. Put

h(x, 5) = f o(x, 1) d.

0

Then G has the form G(p) = J h(x, p(x))dx. The assumptions of
o]
[1-Proposition 1X.2.1] are satisfied and thus '

G*(p) = f ) dx,
0

where I'(x) = sup{p(x) t — h(x, t)}. If we denote #,: R—> R
teR

h(t) = h(x, t),
then

I(x) = h{(p(x)).

The function g, is continuous, increasing and surjective for almost all xe £2
and thus from [3-Theorem I11.4.8] it follows for almost all x € £2 that

hX) = j g5 (s) ds.
0
Hence
P(x)
G*(p) = f f ¢-'(s) ds. -
o Jo

Using Lemma 1, Lemma 2 and the definition of ¥ we have

Z(p) = inf f I[Aoth, Vol dr — f (f — p) vdx — J Jwg;'(s) dsdx. (7)
veV Jo o a Jo

The following lemma describes an important property of £.
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Lemma 3. Let u be the solution of (2). Then
sug L(p)=2Lgl,uw)=F )= in't:f(v).
pe Ve

Before the proof of Lemma 3 we prove Lemma 4.
Lemma 4. For ve V it holds

G(v) + G*(g(., v) = L v(x) g(x, v(x)) dx.

Proof. The properties of g, and [3-Theorem II1.4.8] imply for almost all
xef ‘

v(x) £,(v(x))
j 50 j £7'(6) ds = o(x) g.(0(x).

0

Integrating this equality over £2 we obtain the assertion of Lemma 4. |
Proof of Lemma 3. From [3-Lemma I11.4.4, Lemma I111.4.11.] follows, that

1
inf | [4,tVv, Vo] dt — J‘ pv dx is attained at point (V' 4,V)~'A’p. Hence using
n

veV Jo
(2) and the uniqueness of # we have

1 1
ing'[ [4t Vv, Vv]dt — J (f—g(,uw)vdx = J [AotVu, Vu] dt —
ve 0 o} 0

- J’ (f — g(, w) udx.
o}

Using (7) and Lemma 4 we obtain

L(gCe, w) = inf j (400, Vo] di — j (f — 8 w)) v dx — G*(g(s, 1)) =
vVE 0 n
- f (Ao, Vai dt — j = 2, 1) 4 dx — G*(g(e, 1)) =
0 n
= jﬂ [4otVu, Vu] dt — J. (f— g(., ) udx + G(u) — j g, wudx =
0 o 0

= J" [4otVu, Vu] dt + G(u) — J‘fu dx = Fu.
0 . n

Assertion of Lemma 4 follows now from (5). |
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We are interested only in the number sup . (p). From Lemma 3 it follows
peH

that it is sufficient to maximize .Z over the set {ge H|q = g(., v) for some ve V}.
Thus we have the dual problem

sup % (v), (8)

veV

where 4: V- R
9(v) = Z(g(., v)).

In fact the problem (8) is (considering (7)) a saddle point problem. This is

unsuitable for our purposes (because we try to approximate the value sup %(v)
veV

from bellow). The following lemma enables us to reformulate this unsuitable
saddle point “supinf’ formulation in a “sup sup” formulation.

Lemma 5. Let pe H. Let us denote

1
D: V>R, D) = J [4,tVv, Vv] dt — J' (f—p) vdx,
0 n

Y. U-> R, Uw)= —f [Lw + R(f — p), Ay ' t(Lw + R(f — p))] dt +

1
+ j [AotA4;'0, Ay '0] dr.
0
There exist unique v,e V, w,e U such that
ing D(v) = Dv,) = Hw,) = sug Hw).
VE we
Moreover v, and w, satisfy the relation
Lw, = A,Vv, — R(f — p)
and they are unique solutions to problems
v,eV, V'M,Vy, =0,
w,eU, L'M;"'Lw, =0,

where M,: H— H, M,(z) = A,z — R(f — p). .
Proof. A4, is strongly monotone, potential and thus the existence and
uniqueness of v, follows from [3-Corollary I11.4.2, Theorem II1.4.1.]. This v,

satisfies V' 4,Vv, = A'(f — p) and thus (see the property of R formulated in
Introduction)
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V'M, Vv, =V'(4,Vv, — R(f — p)) = V' 4,Vv, — A'(f — p) = 0. O]
From [3-Theorem I11.4.10] we have the existence of y,e KerV’ such that
¥i(y,) = sup_ ¥(y) = inf &) (10)

yeKer vV veV

where ¥,: H - R,

1 1
() = —f Iy + R( = p), A" 1(y + R( — p)] di +j (ot 4510, 4510 dz.
0 0
This y, satisfies [3-Theorem 111.4.10.]

Y, = 4oV, — R(f — p). (1)
Hence
AO_‘(yp - R(f_P)) = va'
From [2], [5] if follows
ImV =KerL’, Im L =KerV’, (12)
and thus
L' A5'(y, + R(f— p)) = 0. (13)

From (11) and from the property of R formulated in Introduction we
obtain

Vy,=V'4,Vu, — V'R(f — p) = 0. (14)
Thus from (12), (14) we have that y, = Lw, for some w,e U. From (10), (12)
it follows now
inf &) = ¥(y,) = ¥w,) = ¥i(Lw,) =
sup ¥i(y) = sup ¥(y) = sup ¥,(Lw) = sup ¥(w).
y=KerV’ yelmL welU welU
Moreover from (13) it follows
L'A;'(Lw,+ R(f —p)) = L'M,; 'Lw, = 0.

The operator M, ' is strongly monotone (and thus coercitive), continuous
(see Lemma 6) and thus [3-Theorem II1.2.2.] the solution w,€ U of the equation
L'M;'Lw, = 0 is unique. ]

Lemma 6. The operator M, ' is strongly monotone and lipschitzian:
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1
[Mp_l‘-h — Mp_qu] < ; [q: — q.l,

m
M,q, — M,q,, q, — q,] > e 4, — g,

The Lipschitz and strong monotonicity constants are independent on p.
Proof. It suffices to prove that 4; ' is strongly monotone and lipschitzian.
Clearly [q, — q,] < M[4;'q, — 4;'q,] and thus

[0 — @l[45'q — 45' @] = [q, — 95, 45'q, — 45 'q,] = m[A;'q, — A7 'q, ) =

m
> AP [-¢f N
Using Lemma 3, Lemma 5 and the definition of 4 we can summarize the

results of this section.
Proposition 2. The functional ¢: V — R detined by

#(v) = sup — f [Lw + R(f — g, 0)), A5 'f(Lw + R — g(e, )] di +
welU 0
(15)
1 £,(v(x))
+f [4,245'0, A(,"O]dt—f I g:-'(s) ds dx
0 n Jo

satisfies

%) = (Z(g., v)) = inf Jﬁ [4otVw, VW] — J f— g(., ) wdx —
weV 0 n

g(x, v(x)
——J J g-'(s)dsdx, veV,
0 Jo

sup 4(v) = in£ F(v).

veV

The following section deals with the problem of approximation of sup %(v)
veV

from bellow using the last formulation of .

4. Approximate solution of the dual problem, a posteriori error estimates

It is clear (Lemma 3) that supremum in (8) is attained at point ». However,
this point is not known explicitly. Our approach is to approximate the value (8)
using the minimizing sequence u,, n =1, 2, ... of #.
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Theorem 1. Let u, #, 4 be defined by (2), (3), (15) and u,e V,n=1, 2,...
be a minimizing sequence of &#. Let s, = 9(u,),n=1, 2,.... Then

N — ul? < 2 (F () —5,) 0.
m

Proof. Let us denote A4: V= V', A = V' A,V. Analogously to the proof of
Lemma 3

s, = inf Jl [4,tVv, Vv] dt — J. f— g, u,))vdx — G*(g(., u,) =
veV 0 Q
=. _[| [AOIVA_IA,(f_ g('9 un))a VA—IA’(f_ g('a un))] dr —
0

- L(f— £(e, 1)) A" A = g(er 1)) dx — G*(g(er ).

The operator 4~

follows that G*(g(., u,)) — G*(g(., u)) because G(., v) and f vg(., v) dx are
(o]

is continuous [3-Theorem I11.2.2.]. From Lemma 4 it

continuous in v over V. Thus using (2) and Lemma 4 we obtain
1
s,,—»J. [4otVu, Vu] dt — j‘ (f —g(., W) udx + G(u) — J ug(., u)dx = ZF (u).
o Q Q

The rest of the proof follows from the inequality s, < sup 4(v) = % (1) and from
veV

Corollary 1. |
Unfortunately the values of % cannot be computed explicitly. However the
“sup” formulation of % (see (15)) enables us to approximate them from bellow.
Theorem 2. Let u, & be defined by (2), (3) and u,, n=1, 2, ... be a
minimizing sequence of #. Let w,, n =1, 2, ... be the unique solution to the
problem

w,eU,,  L,B,Lw,=0, (16)

where B, = M,',,. (For definition of M, , see Lemma 5.)
Then for r,, n =1, 2, ... defined by

n= “J [Lwn + R(f— g(" un))’ Ao_lt(Lwn + R(f_ g('9 un)))] dr +
0

1 £(x, Up(X))
+f [AgtAy'0, A3 '0] dt —I J g-'(t)dedx
0 2 Jo
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it holds
Huy—ul? < (F @) — r,) 0.
m

Proof. Let the value s, (see Theorem 1) be attained at v,e U i.e.

Y (u,) = —J [Lv, + R(f — g(-, w,)), Ay 't(Lv, + R(f — g(-, u,))] dt +

1 8(x, u,(x))
+f [AytA5'0, A5'0] dt—J~ I g ' (1) drdx
0 2 Jo

We will show that v, — w, — 0 in U. First we prove
Lemma 7. v, - v, in U, where v, is the (unique) solution of the problem

voe U, L' Ay'(Lvy + R(f — g(+, u))) = 0.

(u is the solution of (2)).

Proof. We know from Lemma 5 that v,e U is the unique solution to the
problem :

v,eU, L'B,Lv, = 0. 17)
Let the operator S: U x V — U be defined by
S, y)=v—tJ"(L'4y " (Lv + R(f — g(-, 1)), 0 <t <2m’/M?).

We shall show that S is uniformly (relative to y) contractive in v and

continuous in y and thus the uniform contractivity theorem (e.g. [6] Theorem
XVI.1.3.) can be used.

From Lemma 6 it follows, that for ye V, the operator C,: U — U’,
Cyov=LM;', Lv

is strongly monotone and lipschitzian with the Lipschitz and strong monotonic-
ity constants independent on y:

Yu,, 1,€ U: {C,v;, — C,05, v, — 03>y = [M!,,Lv, — My, Lv,, Lv, — Lv,] >

m 2
ZFHU;—U:II,

Yo, e U: || Cioy, — Cooy |y = || L,(Mg—(-..]_r)Lvl - Mgf.! wlv) |y <

, 1 1
<|L ”L(H, vy— Ly — )l = —|lv, — v, |,
m m

since | Lllyy.my= 1L e, 0y =1, [Lv] = | v, VveU.
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The properties of J [3-Lemma 1.6.2] imply now
VUl, UZE U: ((J—]Cyvl - J_lcyvz, U| = vz)) = <Cyv| - vaz, U, - U2>U 2

m 2
ZFHUI_UZH ’

_ 1
Vo, e U | J7'Coy = I Cyoy | = | Cyoy = Cyoyll o < — [l vy — 0, ||
m

Thus the operator J~'C, satisfies the assumptions of [3-Lemma II1.3.1.].
Therefore, for ye V, the operator S{": U— U,
SO =50,y (=v—1J""Cyp)

is contractive in v for 0 < # < 2m’/M?. The contractivity constant is indepen-
dent.on y. The operator S¥(y): V- U

S2(y) = S(v, y)
is continuous in y for ve U because g satisfies the growth conditions (see
Section 2) and R, 4;', L’ are continuous operators.
It is clear (Lemma 5), that the fixed point of S{” is v,. The uniform
contractivity theorem implies

U, > u=>0, - v,

where v, is the fixed point of S{". Hence L' Ay '(Lv, + R(f — g(-, u))) =0. W

From (16), (17) it follows that w, is the Galerkin approximation of v,. The
strong monotonicity and Lipschitz constants of B,, n = 1, 2, ... are independent
on n and thus [3-Theorem II1.3.3.]

lon = wall < Cll Bv, —v,ll, n=1,2,....

The constant C is independent on n. Hence using the property of P,, n = 1,
2, ... formulated in Introduction and the well known property || P, | w,uy =1,
n=1,2, ... we obtain

"wn_vn“ < C”R,U,,—U,,” = CllB:vn_Bzvo+RxUO_v0+UO_vn|| <

S CI BN ww, uplvw— vl + Cll By — vy |l + Cllvg— v, 0.

The continuity of ¥ (for the definition of ¥ see Lemma 5) implies now
lim r, = lim 5, = #(u). The rest of the proof follows from Corollary 1. W

The computation of v,, n =1, 2, ... in Theorem 2 requires the solution of

a nonlinear equation in a finite-dimensional space. The following theorem
requires only a solution of a linear equation in finite-dimensional space.
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Theorem 3. Let u, # be defined by (2), (3) and u,eV, n=1, 2,... be a
minimizing sequence of . Let z, € U,, the sequence z,, n = 2, 3, ... be defined
by

z,=D,z,_,,
where D,, n =2, 3, ... is the operator D,: U, - U,
Dw=w-—utJ;"(L,B,L,) w, 0 <t <2m’/M?). (18)
(For definition of B, [see Theorem 2].) Then for the sequence d,,n = 1, 2, ...
defined by

d,=— f [Lz, + R(f — (-, u,)), Ay 't(Lz, + R(f — g(-, u,)))] d +
0

1 8 (uy(x))
+j [45'tA5'0, 45'0] dt—J j g ' () dedx
0 2 Jo
it holds |
2
'y — ull, S;(f(u,.) —d,)—0.

Proof. Repeating the argument of the proof of contractivity of S in
Theorem 2 (replacing U, J, L by U,, J,L,) we can show the contractivity of D,,
n =1, 2,.... The contractivity constant is again independent on n.

The fixed point of D, is w,, n=1, 2,.... (For the definition of w, see
Theorem 2.) Thus according to [3-Lemma I11.3.2.] the sequence z,, n = 1, 2, ...

defined by (18) tends (in U) to v,(= lim w,). The rest of the proof follows from

the continuity of ¥ and from Corollary 1. |l

Remark 3. The computation of z,, n = 2, 3, ... requires in each step solution
of a linear equation in a finite-dimensional space, namely the solution of the
equation

Jz,=J2,_ —tL,B,L,z,_,, z,eU,. (19)
Let ay, ..., a, be the basis of U,. Then (19) is equivalent to

{Jnzs» @)y = Lz,, La)] = [Lz,_,, La)] — t[B,L,z,_,, L,a;], j=12,..n
Thus
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where (a,, ..., @,)€ R" is the unique solution of the system of linear algebraic
equations

n

Z a,((a;, a)) = ((z,_,, @))) — B,Lz,_,, La}, j=12,...n. (20)

i=1

(We used the identity [Lv, Lw] = ((v, w))) The matrix of the system in (20) is the
Gramm matrix and thus it is positive definite.
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PE3IOME

ATIOCTEPUOPHAS OLIEHKA MOTI'PEIIHOCTHU MPUBJIN3UTEJIbHBIX PEIIEHUNA
HEJIMHEAHOW DJUIMIITUYECKOY KPAEBOH 3AJIAUM

IOpaii Bencs, Bpatucnasa

CraThs NOCBALLECHA KOHCTPYKIIMH anlOCTCPHOPHBIX OLIEHOK NMOTPEIUHOCTH NMPHOIM3HTENbHBIX
pelICHHH HEJTMHEHHOM LTMNTHYECKOH KpaeBoi 3aJayd C KpacBbIMH YCIOBHAMHM JlHpHXjeTa
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2
-y 9 (ai(x, Vu)) + g(x, u) = ix),  in 2

i=1 0X;
ulaa= 0.

IMoka3aHa CXOAMMOCTb KOHCTPYHPOBAHHOM OLEHKH K JAEHCTBUTENLHOM ounbke. [ BHIYUCTIEHUS
OLICHKH MOrPEIIHOCTH HAl0 PELIMTh CHCTEMY JIMHEHHBIX aireGpanyeckux ypaBHEHHH.

SUHRN
APOSTERIORNY ODHAD CHYBY PRIBLIZNYCH RIESENI NELINEARNE]J
ELIPTICKEJ OKRAJOVEJ ULOHY

Juraj Weisz, Bratislava

Praca sa zaobera konstrukciou aposteriornych odhadov presnosti pribliznych rieseni nelinear-
nej eliptickej okrajovej tlohy s Dirichletovou okrajovou podmienkou ‘

2
—Y 2 e, Vi) + g, ) = i),
i=1 0X;
ulog = 0.

Dokazuje sa konvergencia odhadu skonstruovaného v praci ku skutocnej chybe priblizného
rieSenia. Vypocet odhadu chyby vyZaduje rieSenie systému linearnych algebraickych rovnic.
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