

Werk

Label: Article **Jahr:** 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_58-59|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVIII—LIX

POLARITIES ON ALGEBRAICAL STRUCTURES

BOHUMIL ŠMARDA, Brno

1. Introduction

A fundamental construction of polarity on an algebraic structure has been described in G. Birkhoff [2]. This polarity has many important properties on lattice ordered groups published for example in books by P. Conrad [3] and V. M. Kopytov [4]. Many authors generalized the classical polarity on lattice ordered groups to other algebraical structures. We mention F. Šik [8], J. Rachůnek [6] and B. Šmarda [9], [10].

Definition ([2], V. §7) Let ϱ be a binary relation on a non-empty set M. If $X \subseteq M$ then the set $X' = \{m \in M : m\varrho x \text{ for each } x \in X\}$ is called a polar of X in ϱ . By induction we can define $X^n = [X^{n-1}]'$, for every natural number n.

General properties of sets of all polars which form Boolean algebras are investigated in this paper. Some results show that a natural restriction are polars for symmetric and antireflexive relations (called polarities). Connections between polarities and equivalences are described in the last part of the paper.

2. Basic properties of polars

Some basic properties of polars and Galois connections are described in [2], V. §7,8. We can show also the following basic properties:

- **2.1.** If $M_o = \{m \in M : m o m\}$ then
- a) ϱ is reflexive iff $M_{\varrho} = M$,
- b) ϱ is antireflexive iff $M_o = M'$,
- c) ϱ is areflexive iff $M_{\varrho} = \emptyset$.

Remark. Recall that a relation ϱ on M is antireflexive (areflexive, resp.) when ϱ has the following property:

If $x \varrho x$ for some $m \in M$ then $x \varrho y$ for each $y \in M$, (for no $x \in M$ is $x \varrho x$, resp.).

- **2.2.** The following assertions are equivalent:
- a) ϱ is symmetric,
- b) $X \rightarrow X''$ is a closure operator on M,
- c) $X \subseteq X''$ for every $X \subseteq M$.
- 2.3. The following assertiosn are equivalent:
- a) ϱ is an equivalence,
- b) $a \in a'' = a'$ for each $a \in M$,
- c) $a \in a'$ and $A \subseteq A' = A''$ or $A' = \emptyset$ for each $a \in M$, $A \subseteq M$.

Proof follows from 2.2 and the fact that ϱ is transitive iff $\emptyset \neq A \subseteq B' \Rightarrow A' \subseteq B'$ for each $A, B \subseteq M$.

- **2.4.** ϱ is a tolerance iff $a \in A' \Rightarrow a \in a' \supseteq A$ for each $A \subseteq M$.
- **2.5.** ϱ is a partial order iff for every non-empty sets $A, B \subseteq M$ the following holds:
 - a) $A \subseteq A' \Leftrightarrow \text{card } A = 1$,
 - b) $A \neq B \land A \subseteq B' \Rightarrow B' \not\subseteq A' \subseteq B'$.

Proof follows from the mentioned characterization of transitivity and the following fact: ϱ is antisymmetric iff $A \subseteq B'$, $B \subseteq A' \Rightarrow A = B = \{m\}$, for a suitable $m \in M_o$, where $A, B \subseteq M, A \neq \emptyset \neq B$.

- **2.6.** 1. ϱ is antireflexive iff $A \cap A' \subseteq M'$, for every $A \subseteq M$.
- 2. If ϱ is symmetric then the following holds: ϱ is antireflexive iff A', A'' are complementary polars, for every $A \subseteq M$.

Proof follows from 2.2.

We can investigate other easy results between relations and corresponding polars.

3. The set of polars

- **3.1. Lemma** (A generalization of [1], Th. 1) If (A, .) is a grupoid, $\overline{}$ is a closure operator on A and $X * Y = \overline{X \cdot Y}$, $\vee Y_i = \overline{\cup Y_i}$, for each X, Y, $Y_i \subseteq A$ then the following assertions are equivalent:
 - 1. $X. Y \subseteq X * Y$,
 - $2. X*Y=X*\overline{Y},$
 - 3. $X.(\vee Y_i) \subseteq \vee (X.Y_i)$,
 - 4. $X*(\vee Y_i) = \vee (X*Y_i)$.

Proof. $3 \Rightarrow 4$: $X * (\lor Y_i) = \overline{X} \cdot \lor Y_i \subseteq \overline{\lor (X \cdot Y_i)} \subseteq \overline{\lor (X \cdot Y_i)} = \lor (X * Y_i)$ and $\lor (X * Y_i) = \overline{\lor X \cdot Y_i} \subseteq \overline{X} \cdot \overline{\lor Y_i} = X * \lor Y_i$.

 $4 \Rightarrow 2$: We choose $Y_i = Y$.

 $2 \Rightarrow 1: X. \overline{Y} \subseteq X * \overline{Y} = X * Y.$

$$1 \Rightarrow 3 \colon X \cdot \vee Y_i = X \cdot \overline{\cup Y_i} \subseteq X * (\cup Y_i) = \overline{X \cdot (\cup Y_i)} = \overline{\cup X \cdot Y_i} = \vee (X \cdot Y_i).$$

Remark. If we change factors in the operations * and . then we receive a similar lemma. For example 3. $(\vee Y_i)$. $X \subseteq \vee (Y_i, X)$.

- **3.2.** Corollary. Let (A, \cdot) be a semigroup and be a closure operator on A. Then the set $\sigma(A)$ of all closed sets in A with regard to $\overline{}$ is a quantale, where $X * Y = \overline{X \cdot Y}, \lor Y_i = \overline{\cup Y_i}$ for every $X, Y, Y_i \in \sigma(A)$ iff $X * \overline{Y} = X * Y = \overline{X} * Y$ for every $X, Y \subseteq A$.
- **Proof.** Let us recall (see [5]) that $\sigma(A)$ is a quantale when the operation * is associative and $X * \vee Y_i = \vee (X * Y_i)$, $\vee Y_i * X = \vee (Y_i * X)$ hold for every X, $Y_i \in \sigma(A)$. From Lemma 3.1 and the Remark after 3.1 it follows that we must prove only the associativity of *: But $X * (Y * Z) = X * (\overline{Y}.\overline{Z}) = X * (Y.\overline{Z}) = \overline{(X \cdot Y) \cdot Z} = \overline{(X \cdot Y) \cdot Z} = \overline{(X \cdot Y) \cdot Z} = \overline{(X \cdot Y) \cdot Z}$, for every X, Y, $Z \in \sigma(A)$.
- **3.3. Theorem.** If ϱ is a symmetric relation on a semigroup (A, \cdot) then the following assertions are equivalent:
- 1. The set $\varrho(A)$ of all polars on A in ϱ is a complete Boolean algebra with regard to the operations $X * Y = (X \cdot Y)''$, $\vee X_i = (\cup X_i)''$ for each X, Y, $X_i \in \varrho(A)$.
 - 2. ϱ is an antireflexive relation with the following properties:
 - a) $a o b \Rightarrow a \cdot b o m$ for every $m \in A$,
- b) X * Y = Y * X, X * X = X holds for every X, $Y \in \varrho(A)$ and X * Y = X * Y'' = X'' * Y holds for every X, $Y \subseteq A$.
- **Proof.** $1 \Rightarrow 2$: a) We have $A = x' \lor x'' = (x' \cup x'')'' = (x' \cap x'')'$ for each $x \in A$ and thus $x' \cap x'' \subseteq A'$. It means that $x \not\in A$ for each $x \in A$ and $x \in A$ and $x \in A$ and $x \in A$ and each $x \in A$.
 - b) It follows immediately from 3.1 and the Remark after 3.1.
- $2 \Rightarrow 1$: Propositions 2.2, 3.2 imply that $\varrho(A)$ is an idempotent quantale and Proposition 2.6 implies that $X' \vee X'' = A$ holds for each $X \subseteq A$. We have $x \varrho y$ for every $x \in X'$, $y \in X''$ and thus $x \cdot y \varrho m$ holds for every $m \in A$. From this $X' \cdot X'' \subseteq A'$, i.e., $X' * X'' = (X \cdot X'')'' = A'$. Finally, X', X'' are complementary polars.
- Now, $X'' = \vee (x'' : x \in X'')$ and $x' \vee X'' = A$ holds evidently for each $X \subseteq A$ and each $x \in X''$. It means that A is a regular quantale and Theorem 2.5 from [5] implies that A is a locale. Finally, A is a distributive complementare complete lattice, i.e., A is a complete Boolean algebra.
- **3.4. Corollary.** Let ϱ be a symmetric relation on a semigroup (A, \cdot) and the set $\varrho(A)$ of all polars on A in ϱ be a complete Boolean algebra with regard to the operations *, \vee . Then the following holds:
 - 1. $X * Y = X \cap Y$, for each $X, Y \in \varrho(A)$.
 - 2. Polars from $\rho(A)$ are ideals of A.
 - 3. $x \varrho y \cdot z \Rightarrow x \varrho z \cdot y$, for each $x, y, z \in A$.

Proof. 1. $\varrho(A)$ is an idempotent quantale and [7, Prop. 1] implies that $\varrho(A)$ is a locale.

2. $A \cdot X \subseteq A * X = A \cap X = X$ and $X \cdot A \subseteq X$ similarly, for each $X \in \rho(A)$.

- 3. We have $x \varrho y . z \Rightarrow x \in (y.z)' \subseteq (y''.z'')' = (y''*z'')' = (z''*y'')' \Rightarrow x \varrho z . y$. The second implication follows similarly.
- 3.5. Theorem. If ϱ is a symmetric relation on a set M then the following assertions are equivalent:
- 1. The set $\varrho(M)$ of all polars on M in ϱ is a complete Boolean algebra with regard to the operations $X \wedge Y = X \cap Y$, $X \vee Y = (X \cup Y)''$, for $X, Y \in \varrho(M)$, where X' is the complement of X.
- 2. ϱ is an antireflexive relation and $(X'' \cap Y) \cup (X \cap Y'') \subseteq (X \cap Y)''$ holds for every $X, Y \subseteq M$.
 - 3. $x \varrho y \Leftrightarrow x'' \cap y'' = M'$ for every $x, y \in M$.

Proof. $1 \Rightarrow 2$: Similarly as in the proof of 3.3.

- $2 \Rightarrow 1$: Follows from 2.6,2 and 3.1.
- $1\Rightarrow 3$: Theorems 3, 4 from [8] imply that $\varrho(M)$ is a Boolean algebra iff ϱ is antireflexive and x non $\varrho y\Rightarrow$ there exists $z\in M$ such that z non $\varrho z, z\in x''\cap y''$. If $x\varrho y$ then $x\in y'$ and $x''\cap y''\subseteq x''\cap x'\subseteq M_o=M'$ follow, i.e., $x''\cap y''=M'$. On the contrary, $x''\cap y''=M'$ implies $x\varrho y$ immediately.
- $3 \Rightarrow 1$: We have $x \varrho x \Rightarrow x'' = M' \Rightarrow x \in M'$ and thus ϱ is antireflexive. Now, x non $\varrho y \Rightarrow x'' \cap y'' \neq M'$ and then $z \notin M'$ exists, i.e., z non ϱz and $z \in x'' \cap y''$. Finally, $\varrho(M)$ is a complete Boolean algebra.

4. Polarities

From the previous results we can recognize the motivation for the following definition.

Definition. A symmetric antireflexive relation on a set M is called a polarity on M.

- **4.1.** ([9], Prop. 2.8) If S is a system of all subsets in M which has a given property (K), S is closed with respect to intersections, $\cup S = M$ and $P = \cap \{\langle m \rangle : m \in M\}$, where $\langle m \rangle$ is the smallest set from S containing m, then the following holds: ϱ is the greatest polarity on M such that all polars on M in ϱ form a complete Boolean algebra and M' = P iff ϱ has the following property: $a\varrho b \Leftrightarrow \langle a \rangle \cap \langle b \rangle = \{O\}$.
 - **4.2.** If σ is a polarity on a set M then
 - a) $a\sigma b \Rightarrow a'' \cap b'' = M'$, for $a, b \in M$,
- b) $\sigma(M)$ is a complete Boolean algebra iff we have: $a\sigma b \Leftrightarrow a'' \cap b'' = M'$, for every $a, b \in M$.

Proof. a) We have $a\sigma b \Rightarrow a \in b'$ and if $x \in a'' \cap b''$ then $x \in a'' \subseteq b' \Rightarrow x\sigma x \Rightarrow x \in M'$.

b) see Theorem 3.5, $1 \Leftrightarrow 3$.

Definition. Let σ be a polarity on a set M. Then the relation $\varrho(\sigma)$ on M such that

$$a\varrho(\sigma) b \Leftrightarrow a'' = b'' \text{ in } \sigma, \text{ for } a, b \in M,$$

is an equivalence, which we shall call an equivalence induced by the polarity σ .

The corresponding decomposition $M/\varrho(\sigma)$ is a partially ordered set $(\alpha \le \beta, \alpha, \beta \in M/\varrho(\sigma) \Leftrightarrow a'' \subseteq b''$ for every $a \in \alpha, b \in \beta$) with the smallest element $O_{\varrho(\sigma)} = M'$.

Definition. Let ϱ be an equivalence on a set M and the corresponding decomposition M/ϱ be a partially ordered set with the smallest element O_{ϱ} . Then the relation $\sigma(\varrho)$ on M defined by

$$a\sigma(\varrho) b \Leftrightarrow A_a \cap A_b = O_{\varrho}$$
, for $a, b \in M$,

where $A_a = \{ \gamma \in M/\varrho : \gamma \le \alpha \in M/\varrho, \ a \in \alpha \}$ and A_b similarly, is a polarity which we shall call a polarity induced by the equivalence ϱ belonging to the given partial order on M/ϱ .

- **4.3.** If ϱ is an equivalence on M then we have:
- 1. $\varrho(\sigma(\varrho)) = \varrho$.
- 2. $\sigma(\varrho(M))$ is a complete Boolean algebra.

Proof. 1. We have $a\varrho b \Leftrightarrow A_a = A_b \Leftrightarrow \{x\sigma(\varrho) \ a \Leftrightarrow x\sigma(\varrho) \ b \text{ for } x \in M\} \Leftrightarrow a'' = b'' \Leftrightarrow a\varrho(\sigma(\varrho)) \ b$, for arbitrary partial order of classes of M/ϱ with the smallest element and for every $a, b \in M$.

- 2. Proposition 4.2 yields that it suffices to prove that $a'' \cap b'' = M' \Rightarrow a\sigma(\varrho) b$ for every $a, b \in M$. If $\alpha, \beta \in M/\varrho$, $\alpha \leq \beta$ then $A_a \subseteq A_b$ for every $a \in \alpha$, $b \in \beta$ and thus $A_z \cap A_b = O_\varrho \Rightarrow A_z \cap A_a = O_\varrho$, i.e., $z\sigma(\varrho) b \Rightarrow z\sigma(\varrho) a$ for $z \in M$. It means that $a'' \subseteq b''$. Now, if $a'' \cap b'' = M'$ and $\gamma \in A_a \cap A_b$, $c \in \gamma \in M/\varrho$ then $\alpha \geq \gamma$, $\beta \leq \gamma$ hold for α , $\beta \in M/\varrho$ such that $\alpha = \{x \in M : x'' = a''\}$, $\beta = \{x \in M : x'' = b''\}$. Finally, we have $a'' \cap b'' \supseteq c''$, i.e., $c'' = M' = O_\varrho$ and thus $A_a \cap A_b = O_\varrho$ and $a\sigma(\varrho) b$.
- **4.4. Theorem.** If ϱ is a map which maps a polarity σ on M onto the equivalence ϱ induced by σ , then the following assertions are equivalent:
 - 1. $\sigma(M)$ is a complete Boolean algebra for each polarity σ on M.
 - 2. $\sigma = \sigma(\varrho(\sigma))$ for each polarity σ .
 - 3. ϱ is an injection.

Proof. $1 \Rightarrow 2$: If $\bar{\sigma} = \sigma(\varrho(\sigma))$ then $a\sigma b \Rightarrow a'' \cap b'' = M'$ (by 4.2) $\Rightarrow x'' \subseteq M'$, for every $x \in \varkappa \in A_a \cap A_b$, i.e., x satisfying $x'' \subseteq a'' \cap b'' \Rightarrow A_a \cap A_b = M' \Rightarrow a\bar{\sigma}b$.

Otherwise, $a \bar{\sigma} b \Rightarrow A_a \cap A_b = M'$ holds because $M' = O_{\varrho(\sigma)} \Rightarrow c \in \gamma \in M/\varrho$ for $c \in a'' \cap b''$, where $\gamma \leq \alpha$, $\gamma \leq \beta \Rightarrow c'' = M' \Rightarrow a'' \cap b'' = M' \Rightarrow a \sigma b$ holds (see again 4.2).

 $2 \Rightarrow 3$: If σ_1 , σ_2 are polarities on M such that $\varrho(\sigma_1) = \varrho(\sigma_2)$ then $a''_{\sigma_1} = a''_{\sigma_2}$

for every $a \in M$. Therefore decompositions $M/\varrho(\sigma_1)$, $M/\varrho(\sigma_2)$ are equal including partial orders defined by $\varrho(\sigma_1)$ and $\varrho(\sigma_2)$. Then $\sigma_1 = \sigma(\varrho(\sigma_1)) = \sigma(\varrho(\sigma_2)) = \sigma_2$ and ϱ is an injection.

 $3\Rightarrow 1$: If $a''\cap b''=M'$ for $a,b\in M$ then $c''\subseteq a''\cap b''$ for each $\gamma\in A_a\cap A_b$ and each $c\in \gamma$, i.e., $c\in M'$ and $A_a\cap A_b=M'=O_{\varrho(\sigma)}$. From this $a\,\bar{\sigma}b$. Proposition 4.2 implies that $a\,\bar{\sigma}b\Leftrightarrow a''\cap b''=M'$, $\bar{\sigma}(M)$ is a complete Boolean algebra and Proposition 4.3 implies that $\varrho(\bar{\sigma})=\varrho(\sigma(\varrho(\sigma)))=\varrho(\sigma)$. The fact that ϱ is an injective map implies $\bar{\sigma}=\sigma$ and thus $\sigma(M)$ is also a complete Boolean algebra.

4.5. Corollary. Let E be the set of all equivalences on a set M and P be the set of all polarities on M such that $\sigma(M)$ is a complete Boolean algebra. Then the mapping $\varrho: P \to E$ such that it maps $\sigma \in P$ onto the equivalence $\varrho(\sigma)$ induced on M by σ is a bijection and the mapping $\sigma: E \to P$ which maps $\varrho \in E$ onto $\sigma(\varrho)$ is the inverse mapping to ϱ .

Proof follows from 4.3 and 4.4.

REFERENCES

- 1. Aubert, K. E.: Theory of x-ideals. Acta Math. Uppsala, 107, 1962, 1-51.
- 2. Birkhoff, G.: Lattice theory. Third Edition, Amer. Math. Soc. Providence, R. I., 1973.
- 3. Conrad, P.: Lattice ordered groups. Tulane University 1970.
- 4. Kopytov, V. M.: Lattice ordered groups (Russian). Moskva 1984.
- 5. Paseka,, J.: Regular and normal quantales, Arch. Math. (Brno) 22 (1986), No. 4, 203-210.
- Rachunek, J.: Prime subgroups of ordered groups. Czech. Math. J. 24 (99), 1974), 541—551.
- 7. Rosický, J.: Multiplicative lattices and frames. Acta Math. Hung. 49 (3—4], 1987, 391—395.
- 8. Šik, F.: A characterization of polarities whose lattice of polars is Boolean, Czech. Math. J. 31 (106), 1981, 98—102.

Received: 10. 10. 1989

- 9. Šmarda, B.: Polars on C*-algebras, Math. Slovaca 2(40), 1990, 133—142.
- 10. Šmarda, B.: Polars and x-ideals in semigroups, Math. Slovaca 1 (26), 1976, 31-37.

Author's address:

Bohumil Šmarda Katedra algebry a geometrie PF UJEP Janáčkovo náměstí 2a 662 95 Brno

РЕЗЮМЕ

ПОЛЯРНОСТИ НА АЛГЕБРАИЧЕСКИХ СТРУКТУРАХ

Богумил Шмарда, Брно

В теории решеточно упорядоченных групп хорошо известны понятия поляра и полярность. В этой статье изучаются эти понятия в обшчности на любом множестве. Именно, свойства множества всех поляр которые являются булевыми алгебрами для симметрических и антирефлексивных отношений. В конце описана связь между полярностями и эквивалентностями.

SÚHRN

POLARITY NA ALGEBRAICKÝCH STRUKTURÁCH

Bohumil Šmarda, Brno

V teorii svazově uspořádaných grup jsou dobře známy pojmy polára a polarita. V tomto článku se vyšetřují tyto pojmy obecně na libovolné množině. Zejména vlastnosti množiny všech polár, které jsou Booleovými algebrami pro symetrické a antireflexivní relace. Závěrem je popsán vztah mezi polaritami a ekvivalencemi.