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POLARITIES ON ALGEBRAICAL STRUCTURES

BOHUMIL SMARDA, Brno

1. Introduction

A fundamental construction of polarity on an algebraic structure has been
described in G. Birkhoff [2]. This polarity has many important properties on
lattice ordered groups published for example in books by P. Conrad [3] and V.
M. Kopytov [4]. Many authors generalized the classical polarity on lattice
ordered groups to other algebraical structures. We mention F. Sik [8], J. Rachi-
nek [6] and B. Smarda [9], [10].

Definition ([2], V. §7) Let o be a binary relation on a non-empty set M. If
X < M then the set X’ = {me M: mox for each xe€ X} is called a polar of X'in p.

. By indyction we can define X" = [X"~')’, for every natural number n.

General properties of sets of all polars which form Boolean algebras are
investigated in this paper. Some results show that a natural restriction are polars
for symmetric and antireflexive relations (called polarities). Connections bet-
ween polarities and equivalences are described in the last part of the paper.

2. Basic properties of polars

Some basic properties of polars and Galois connections are described in [2],
V.§7,8. We can show also the following basic properties:

2.1. If M, = {me M: mom} then

a) o is reflexive iff M, = M,

b) o is antireflexive iff M, = M’,

c) o is areflexive iff M, = 0.

Remark. Recall that a relation g on M is antireflexive (areflexive, resp.)
when p has the following property:

If xpx for some me M then xgy for each ye M, (for no xe M is xpx, resp.).
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2.2. The following assertions are equivalent:

a) p is symmetric, .

b) X — X" is a closure operator on M,

¢c) X< X" forevery X = M.

2.3. The following assertiosn are equivalent:

a) o is an equivalence,

b) aea” = a’ for each ae M,

c)aca’ and A< A" = A" or A =0 for eachae M, A = M.

Proof follows from 2.2 and the fact that o is transitive iff ) # 4 < B’ =
= A’ < B’ for each A, B< M.

2.4. o is a tolerance iff ae 4" = aea’ = A4 for each 4 = M.

2.5. g is a partial order iff for every non-empty sets A, B = M the following
holds: ’

a) A< A'<card 4 =1,

b)) A#BAASB =B ¢ A <B.

Proof follows from the mentioned characterization of transitivity and the
following fact: o is antisymmetric iff A =€ B’, B A’=A = B={m}, for a
suitable me M, where A, B M, A # 0 # B.

2.6. 1. g is antireflexive iff An A" = M’, for every 4 = M.

2. If g is symmetric then the following holds: g is antireflexive iff 4’, A" are
complementary polars, for every 4 = M.

Proof follows from 2.2.

We can investigate other easy results between relations and corresponding
polars.

3. The set of polars

3.1. Lemma (A generalization of [1], Th.1) If (4,.) is a grupoid, is a
closure operatoron 4and X* Y = X.Y, v ¥, = U ¥, foreach X, Y, Y, < A then
the following assertions are equivalent:

. X.YS Xx7Y,

2. XxY=Xx»Y,

3. X (v)evX.Y),

4. Xx(v Y)= v (XxY). _

Proof. 3=4: Xx(vVH=X.vicsvX.NcsvX. Ny (XsY)
and v X*xY)=VX. Y cX.UY _y,yyY.

4 =2: We choose ¥, =Y.

2=>1:X.YS XxY=XxY.

1= X.vYi=X.uYcXx(u)=X.(UY)=uUX.Y = v (X.Y).

Remark. If we change factors in the operations * and . then we receive a
similar lemma. For example 3. (v Y). X < v (Y. X).
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3.2. Corollary. Let (4, .) be a semigroup and be a closure operator on 4.
Then the set o(A) of all closed sets in 4 with regard to is a quantale, where
X«Y=X.Y,vY=uUYforevery X, Y, Yeo(A)if X« Y=XxY = XxYfor
every X, Y < A.

Proof. Let us recall (see [5]) that a(A4) is a quantale when the operation
isassociativeand Xx v Y= v (Xx Y), v Yx X = v (¥;* X) hold for every X,
Y€ o(A4). From Lemma 3.1 and the Remark after 3.1 it follows that we must
prove only the associativity of x: But X«(Y*2Z) = X*(Y.Z)=X»(Y.Z) =
=X.(Y.2)=(X.Y).Z=X.Y)«xZ=XxY)xZ, forevery X, Y, Ze o(A).

3.3. Theorem. If g is a symmetric relation on a semigroup (A4, .) then the
following assertions are equivalent:

1. The set o(A) of all polars on 4 in g is a complete Boolean algebra with
regard to the operations X Y = (X.Y)", v X, = (v X,)” for each X, Y, X;e
€0 (A).

2. o is an antireflexive relation with the following properties:

a) apb=>a.bom for every me A,

b) X«Y =YX, XX =X holds for every X, Yeo(4) and XY =
= XxY" = X"xY holds for every X, Y < A.

Proof. 1 =2: a) We have A =x" v x" = (x"ux")" = (x’n x")" for each
xe A and thus x’ n x”" = A’. It means that xom for each me A and g is anti-
reflexive. Further, apb = aeb’=a.bea.a’ = a’"xa’ = A’ =a.bomfora,be A
and each me 4.

b) It follows immediately from 3.1 and the Remark after 3.1.

2 = 1: Propositions 2.2, 3.2 imply that o(A) is an idempotent quantale and
Proposition 2.6 implies that X” v X" = A4 holds for each X = 4. We have xgy
for every xe X', ye X" and thus x.yom holds for every me A. From this
X . X' cA,ie, X' «xX"=(X.X")" = A’. Finally, X', X" are complementary
polars. '

Now, X" = v (x": xe X")and x’ v X" = A holds evidently for each X < 4
and each xe X”. It means that A is a regular quantale and Theorem 2.5 from [5]
implies that A is a locale. Finally, A4 is a distributive complementare complete
lattice, i.e., 4 is a complete Boolean algebra.

3.4. Corollary. Let g be a symmetric relation on a semigroup (4, .) and the
set o(A) of all polars on 4 in g be a complete Boolean algebra with regard to
the operations %, v . Then the following holds:

1. XxY=XnY, for each X, Ye o(A).

2. Polars from o(A) are ideals of A.

3. xgy.z=xpz.y, for each x, y, ze A.

Proof. 1. o(A) is an idempotent quantale and [7, Prop. 1] implies that o(A4)
is a locale.

22 A X< AxX=AnX=Xand X.A € X similarly, for each Xe o(4).
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3. We have xgy.z=xe(y.z) < (y".2")Y =()'*2") =" *y") =" .y")Y =
= xpz.y. The second implication follows similarly.

3.5. Theorem. If g is a symmetric relation on a set M then the following
assertions are equivalent:

1. The set o(M) of all polars on M in g is a complete Boolean algebra with
regard to the operations X A Y=XNnY, Xv Y=(X0UY), for X, YeoM),
where X’ is the complement of X.

2. ois an antireflexive relation and (X" N Y)u (X n Y") =€ (X n Y)" holds
for every X, Y = M.

3. xgp<>x"ny" = M’ for every x, ye M.

Proof.. 1 = 2: Similarly as in the proof of 3.3.

2= 1: Follows from 2.6,2 and 3.1.

1 = 3: Theorems 3, 4 from [8] imply that o(M) is a Boolean algebra iff o
is antireflexive and x non gy = there exists ze M such that z non gz, ze x" N y".
Ifxgythenxey’ andx"ny” < x"nx’' = M, = M’ follow,i.e,x"n y"=M".
On the contrary, x”" ny” = M’ implies xgy immediately.

3=1: We have xpx = x" = M’ = xe M’ and thus g is antireflexive. Now,
xnon gy=x"Ny"” # M’ and then z¢ M’ exists, i.e.,, znon oz and zex" N y”.
Finally, o(M) is a complete Boolean algebra.

4. Polarities

From the previous results we can recognize the motivation for the following
definition.

Definition. A symmetric antireflexive relation on a set M is called a polarity
on M.

4.1. ([9], Prop. 2.8) If S is a system of all subsets in M which has a given
property (K), S is closed with respect to intersections, US = M and P = n {{(m):
me M}, where {m) is the smallest set from S containing m, then the following
holds: g is the greatest polarity on M such that all polars on M in ¢ form a
complete Boolean algebra and M’ = P iff o has the following property: apb <>
< {a)y n<b) ={0}.

4.2. If o is a polarity on a set M then

a) acb=a"nb" = M’, for a, be M,

b) o(M) is a complete Boolean algebra iff we have: acb<>a" nb" = M’,
for every a, be M.

Proof. a) We have aob =>aeb’ and if xea” n b” then xea” = b’ = xox =
=>xeM’.

b) see Theorem 3.5, 1 <>3.
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Definition. Let o be a polarity on a set M. Then the relation g(o) on M such
that

ao(o) b<=a" =b" in o, for a, be M,

is an equivalence, which we shall call an equivalence induced by the polarity o.
The corresponding decomposition M/ (o) is a partially ordered set (a < S,
a, fe M/o(o)<>a" = b” for every aea, be ) with the smallest element
00(0) M.
Definition. Let o be an equlvalence on a set M and the corresponding
decomposition M/o be a partially ordered set with the smallest element O,.
Then the relation o(g) on M defined by

ac(Q) b=>A,NnA,= 0, fora, be M,

where A, ={yeM/o: y < ae M/g, ac a} and A, similarly, is a polarity which
we shall call a polarity induced by the equivalence o belonging to the given
partial order on M/p.

4.3. If g is an equivalence on M then we have:

1. o(o(0)) =

2. o(p(M)) i 1s a complete Boolean algebra.

Proof. 1. We have agb< A, = A,<>{x0(p) a<>x0(p) b for XeM}<=a" =
= b" <> ap(o()) b, for arbitrary partial order of classes of M/p with the
smallest element and for every a, be M.

2. Proposition 4.2 yields that it suffices to prove that a”"Nnd" = M’ =
= ao(g) b foreverya, be M. If a, Be M/, a < Bthen A, < A, for every a€ q,
beBandthus A.n A4, =0, A4A.nA,=0,,1ie., z0(0) b=>z0(g)aforzeM.
It means that @” < b". Now, if a"nb" = M’ and ye A,n A,, ce ye M/ then
a> 7y, fp<vyhold for a, fe M/p such that a = {xeM: x" =a"}, f={xeM:
x" = b"}. Finally, we have a" nb" 2 ¢”,i.e., ¢" = M’ = O,and thus 4,n 4, =
= 0, and aoc(9) b.

4.4. Theorem. If ¢ is a map which maps a polarity o on M onto the
equivalence g induced by o, then the following assertions are equivalent:

1. o(M) is a complete Boolean algebra for each polarity o on M.

2. 0 = o(9(0)) for each polarity o. |

3. o s an injection.

Proof. 1=2: If 6=0(0(0)) then acb=a"nb"=M" (by 4.2)
=x" < M’,forevery xe xe A,n A,,1.e., xsatisfyingx”" < a"nb"=A,n A, =
= M’ =adb. -

Otherwise, a6b=>A,n A, = M’ holds because M’ = O, ,,=ceye M/
forcea"nb’,wherey< a,y< B=c"=M'=a"nb" = M’ = aobholds (see
again 4.2). ‘

2=3:1f o), 0, are polarities on M such that ¢(o,) = o(a,) then a; = aj

1]
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for every ae M. Therefore decompositions M/o(o,), M/o(0,) are equal includ-
ing partial orders defined by o(o,) and ¢(o,). Then g, = a(o(0,)) = a(g(a,)) =
= 0, and g is an injection.

3=1:1Ifa"nb" = M’ for a, be M then ¢” < a”" nb" for each ye A, A4,
and each cey,i.e.,ce M and 4,n 4, = M’ = O,,,. From this aGb. Proposi-
tion 4.2 implies that agb<a" nb" = M’, 6(M) is a complete Boolean algebra
and Proposition 4.3 implies that (&) = o(c(@(0))) = o(0). The fact that g is
an injective map implies 6 = o and thus o (M) is also a complete Boolean
algebra.

4.5. Corollary. Let E be the set of all equivalences on a set M and P be the
set of all polarities on M such that o(M) is a complete Boolean algebra. Then
the mapping g: P — E such that it maps o€ P onto the equivalence ¢( o) induced
on M by ois a bijection and the mapping o: E — P which maps g€ E onto o( @)
is the inverse mapping to o.

Proof follows from 4.3 and 4.4.
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PE3IOME

MOJIAPHOCTHU HA AJITEBPAMYECKUX CTPYKTYPAX

Bborymun lImapna, bpHo

B TEOpHH pELIETOYHO YMOPSAIOYEHHBIX FPYNIl XOPOLUO M3BECTHBI MOHATUS MOJIApa U MOJs-
PHOCTb. B 3TOi cTaThe M3y4arOTCs ITH MOHATHSA B OOIIYHOCTH Ha 1060M MHOXecTBe. IMeHHO,
CBOMCTBAa MHOXECTBA BCEX MOJISAP KOTOPBIE ABJIAOTCS OyneBbIMH anredpaMu 11 CAMMETPHYECKHUX
¥ aHTHpe(JIEKCHBHBIX OTHOILLICHUH. B KOHLIe OnMMCcaHa CBA3b MEXY MOJIAPHOCTAMHU M IKBHBAJICHT-
HOCTSIMH.

SUHRN

POLARITY NA ALGEBRAICKYCH STRUKTURACH

Bohumil Smarda, Brno .

V teorii svazové uspoiadanych grup jsou dobfe znamy pojmy polara a polarita. V tomto
¢lanku se vysetiuji tyto pojmy obecné na libovolné mnozingé. Zejména vlastnosti mnoziny vSech
polar, které jsou Booleovymi algebrami pro symetrické a antireflexivni relace. Zavérem je popsan
vztah mezi polaritami a ekvivalencemi.
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