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A PROOF OF RADO’S THEOREM

ON REMOVABLE SINGULARITIES OF ANALYTIC FUNCTIONS

ALEXANDER ABIAN, USA

Abstract. In this self-contained paper, a lucid proof of Rado’s theorem on removable sin-
gularities of analytic functions is given.

In a 1924 paper, T. Rado proved a Lemma which is essentially equivalent
to the Theorem below concerning a rather significant case of the removable
singularities of analytic functions. Some 27 years later, in 1951, Rado’s result
was further modified by H. Behnke and K. Stein. In 1952, H. Cartan refor-
mulated the result in its present form giving a proof based on the properties of
subharmonic functions. In 1956, E. Heinz improved the proof based on the
representation of harmonic functions by means of the Poisson’s integral. Fur-
ther generalizations were given by I. Glicksberg in 1964 and E. L. Stout in 1968
(see references in [2] and [4]).

In the 1967 paper of R. Kaufman [3], a proof of Rado’s theorem was given
in an extremely terse form. The present self-contained paper is written based on
the central lines of Kaufman’s proof. Certainly, the important theorem of Rado
and an elegant and easy to follow proof of it should be of interest to anyone
concerned with the properties of analytic functions

In what follows, unless otherwise indicated, all functions are complex
valued and of a complex variable.

Lemma 1. Let f be a continuous function on the closed unit disk D and analytic
at every point of the open unit disk D at which f is not zero. Then the maximum
modulus of f is attained at a point on the boundary 0D of D.

Proof. Let 4 be the set of all the points of D where f is not zero, i.e.,

A ={z|zeD and f(z) # 0} (1)
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Let C be the set of all complex numbers. Clearly, 4 is the preimage of the
open set C — {0} under the continuous function f from D into C. Thus, 4 is an
open subset of D. Consequently, fis continuous on 4 and analytic in the open
set A. Therefore [1] the maximum modulus of f'is attained at a point m on the
boundary 04 of 4. However, me (0D n 0A) since f is continuous in D and
f(z) = 0 for every ze (D — A). Thus, medD, as desired.

Remark. The open set A given by (1) is defined in connection with the
function f. Nevertheless, as Lemma 2 shows, any function g which is defined
only on 4 and which is continuous on A4 and analytic in A4 shares with f the
property of attaining its maximum modulus on dD. This is indeed a curious fact.
We observe that, in part, this is due to the fact (as the proof of Lemma 1
indicates) that:

(0D N 0A) # 0 whenevever 4 # 0. 2)

Lemma 2. Let f, D and A # Q be as in Lemma 1 and (1). Let g be a function
continuous on A and analytic in A. Then the maximum modulus of g is attained
at a point on the boundary 0D of D.

Proof. Clearly, the function gf'is continuous on 4 and analytic in (the open
set) A. Thus, its maximum modulus max | gf] is attained on 04. However, since
f(z) = 0 for every ze (D — A), we see from (2) that max | gf] is attained on 0D.
A similar argument shows that for every positive integer n, max | g"f| is attained
on 0D. Consequently, for ce 4, we have:

|8() "I e)| < (max|g])" (max|f])
or
|g(c)| IAe)|"" < max|g| (max|f])""

which by letting n — oo implies |g(c)| < max|g| for every ce A, as desired.
Lemma 3. Let f, D and A # 0 be as in Lemma I and (1). Then A is dense in
D.
Proof. We must show that D = A4. Let us assume the contrary. Thus, D — 4
and A4 are nonempty disjoint open subsets of D implying that there exists a
boundary point b of 4 such that b€ D. But then it can be readily verified that
there exist me (D — A) and ae A4 such that

la—m|<1—|m| 3)

We observe that 1 — |m] is the shortest distance between m and any point on
0D. Next, let us consider the function g given by g(z) = 1/(z — m). Clearly, g is
continuous on A4 and analytic in A. Therefore, by Lemma 2, max|1/(z — m)| is
attained on 0D. But then, because of our above observation, max|1/(z — m)| <
< 1/(1 — | m]|). However, by (3), for z =a we have 1/|]a — m| > 1/(1 — |m|).
This contradicts our assumption and Lemma 3 is proved.
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Lemma 4. Let f be a continuous function on the boundary 0D of the unit disk
D. Then for every € > 0 there exists a polynomial P such that

|Re(f(z) — P(2))| < € for every zedD 4)

Proof. Let us consider the continuous real valued function Re(f) on 0D. Let

us parametrize 0D by the arc length 6 and let £ > 0 be given. Then it is always

possible to determine a truncation a,+ a,cos@+ b,sin@+ ... + a,cosnf +

+ b,sinnf of the Fourier series of a polygonal line which suitably approximates
the graph of Re(f) on 0D, and, such that

IRef(z) — (ay + a,cos @+ b;sinf + ... + a,cosnfd + b,sinnf)| <& (5)
for every zedDi.e., z = €
Clearly Z (aycosk@ + b, sink6) appearing in (5) is (say, with b, = 0) the
real part of the polynomial P(z) given by '
P(z) =ay+ (a; — ib))z + (a, — ib)) 2> + ... + (a, — ib,) "

which, in view of (5), establishes (4).
In (5), letting e run through 1/k withk = 1,2, 3, ..., in view of (4) we obtain:
Lemma 5. Let f be a continuous function on the boundary 0D of the unit disk
D. Then there exists a sequence (P,) of polynomials such that

|Re(f(z) — P.(2))| < 1/k for every zedD and k =1, 2, ... (6)
For the proof of the Theorem below, we need also to observe that:
IRe(z)| < l/k iff | €| < e and |e *| < e'* fork =1, 2,... @)

Finally, we prove:

Theorem (Rado). Let f be a continuous function on the closed unit disk D and
analytic at every point of the open unit disk D at which f is not zero. Then f is
analytic in D.

Proof. From (6) and (7) it follows that there exists a sequence of polyno-
mials P, such that fork =1, 2, 3, ...

19| < % and |9 | < e for zedD 8)

Without loss of generality we assume that fis not the zero function, i.e., 4
(as given by (1)) is nonempty. By the hypothesis of the Theorem, for every k,
we see that &~ a5 well as ¢*” ~* is a continuous function on 4 and analytic
in A. Hence, by Lemma 2, the maximum modulus of either of these functions
(with ze A) is attained on 86é3D. Thus, the inequalities in (8) are valid not only
for ze 0D but also for ze A. From Lemma 3, however, it follows that A4 is dense
in D and therefore (because of the continuity of the functions involved) the
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inequalities in (8) are valid also for ze D. From this and (7), we conclude that
the inequalities in (6) are valid also for ze D, i.e.,

|Re(fiz) — P.(2))| < 1/k for every zeD and k =1, 2, ... Q)

Since P(z) is a polynomial for every k, (9) implies that the sequence
(Re P,(z)) of harmonic functions converges uniformly to Ref(z) on D. Conse-
quently, U = Ref'is a harmonic function in D with continuous partial deriva-
tives U, and U, in D. Since Imf = Re(—if), the same reasoning shows that
V = Imfis a harmonic function in D with continuous partial derivativés ¥, and
V. in D. However, f is analytic in 4 (as given (by (1)) and hence the Cauchy-
Riemann equations U, = ¥, and U, = —V, are valid in 4. But then since 4 is
dense in D and, as just noted, these partial derivatives exist and are continuous
throughout D, the above Cauchy-Riemann equations are valid also in D. Thus,
fis analytic in D, as desired.
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SUHRN

DOKAZ RADOOVEJ VETY O ODSTRANITELNYCH SINGULARITACH
ANALYTICKYCH FUNKCI{
" Alexander Abian, USA
V ¢lanku je podany jasny a pomerne jednoduchy dokaz Radoovej vety o odstranitelnych

singularitach analytickych funkcii. ZaloZeny je na myslienkach predchadzajiceho dékazu R. Kauf-
mana.
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PE3IOME

AOKA3ATEJIbCTBO TEOPEMbI PAJJO O YCTPAHUMbIX OCOBEHHOCTSAX
AHAJIMTUYECKUX ®YHKLIUNA

Anekcanuap Ab6uan, CILIA
B craTbe NpocTo M ACHO A0Ka3aHa Teopema Paso 0 yCTpaHHMBIX OCOGEHHOCTAX aHAIUTHYEC-

kux GyHkuuit. Jloka3aTeNbCTBO OCHOBAHO Ha MAEAX NIPEANYLIETO N0KA3ATENLCTBA IPHHALIEKAL0-
wero P. Kaypmany.
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