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A REMARK ON THE METRIC STRUCTURE OF THE SPACE
OF INTEGRABLY BOUNDED FUZZY VARIABLES

J. BAN, Bratislava

1. Introduction and preliminarics

The study of the theory of fuzzy sets initiated by L. A. Zadeh has received
considerable attention in recent years. An important role in this theory is played
by the concept of fuzzy random variables introduced by Puri and Ralescu in
[11]. This concept generalizes the concept of random sets and was defined as a
tool for representing relationships between the outcomes of a random experi-
ment and inexact data.

Puri and Ralescu [11] defined also the metric structure in the space of fuzzy
subsets of R". The metric in the space of all integrably bounded random sets was
introduced by Hiai and Umegaki [8].

Using these results we define the metric in the space of integrably bounded
fuzzy random variables and we show that this metric space is complete and it
can be embedded isometrically into a normed space (which is a generalization
of the results due to Radstrém [13] and Puri and Ralescu [10]).

Let Z be a separable Banach space with the norm || . || and let 4, B be two
nonempty bounded subsets of 2. The Hausdorff distance between 4 and B is
defined by

h(A4, B) = max {sup inf ||a — b |, sup inf ||a—b|}.
acA beB beB a€A
If K(Z') denotes the family of all nonempty compact subsets of Z, it is well

known that (K(Z), h) is a complete separable metric space. For 4 € K(Z') denote
by

|l =supla] = h(4, {0}).

By coK(Z') we denote the family of all nonempty compact and convex subsets
of Z.
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The linear structure in K(Z') can be defined by the Minkowski operations
of addition and scalar multiplication:

A+ B={a+b:acA, be B} and A4 = {da: ae A}

where 4, Be K(Z) and AeR.

Let (£2, o7, P) be a probability space with <7 a o-field of measurable subsets
of the set £2 and a probability measure P.

Let F: 2— K(Z). The function F is called a (compact) random set if
F~'(B)e o for each Borel set B in metric space (K(Z'), h) (for the measurability
of random sets see also [8]). Let L'(£2, ) denote the Banach space of (equiva-
lence classes of) measurable functions f: £ — Z such that the norm

I =f I £l dP
o]

is finite. By L'(£2, R) we denote the usual Banach space of real-valued measura-
ble functions.

A measurable function f: €2 — Z is called a (measurable) selection of F if
f(w)e F(w) P-a.e. Denote by
S(F) = {fe L'(92,2): f is a selection of F}
An expected value EF of a random set F was defined in [1] in the following way:
EF = {Ef: fe S(F)}.

Another definition of the expectation can be found in [6]. These definitions were
shown to be equivalent by Byrne [5]. A random set is called integrably bounded
if there exists a nonnegative real-valued function £eL'(£2, R) such that
| x || < é(w) for any x and @ with xe F(w). Since the function w— | F(w)| is
measurable, it is clear that F is integrably bounded if and only if

'[ |F(w)| dP < co.

Moreover, I |F(w)| dP = rS\Sx]‘): f | f(w) || AP if S(F) # 0 and thus F is integ-
Q €S(F) Ja

rably bounded if and only if S(F) is nonempty and bounded in L'(€2, Z) ([8],
Theorem 3.2.)

The space of all integrably bounded random sets with compact values will be
denoted by Z(£2, ), where two functions F,, F, € £ (£, ) are considered to be
identical if F, (@) = F,(w) P-a.e.

For F, Ee £ (£, Z) it is easy to see that

h(F (o), B(0) < |F(0)| + | ()]
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and thus the function o+ h(F,(w), E(®)) is in L'(£2, R) and we can define

I(F, Fy) = L h(F,(a), Fy)) dP.

In [8], Theorem 3.3. it was proved that (£ (£2, &), /) is a complete metric space.

2. Fuzzy random variables

If M is a set, a fuzzy subset of M is a function u: M — [0, 1]. For any fuzzy
subset u: M — [0, 1] denote

u’={meM: u(m) > aj, ael0, 1].
Let # (&) denote the space of all fuzzy subsets u: & — [0, 1] such that:
(1) u®is a compact subset of & for every a > 0

(2) u' = {xeZ: u(x) = 1} is nonempty
and let £ (&) = {ue %(Z): u®is convex, a > 0}.

We use a concept of fuzzy random variables introduced by Puri and Ralescu
[11].
A fuzzy random variable is a function X: 2 — %(Z) such that for every a > 0
the function X%: 2 — K(Z) defined by X%(@) = {xe ¥: X(®) (x) = a} = (X(w))*
is a (measurable) random set. The functions X are called a-cuts of X.
Lemma 1: Let X and Y be two fuzzy random variables. Then X(w) = Y(w)
P-a.e. if and only if X% w) = Y% w) P-a.e. for every a > 0.
Proof: If X(w) = Y(w) P-a.e. then clearly also X%w) = Y%w) P-a.e., a > 0.
Conversely, let Q denote the set of all rational numbers in [0, 1].
Put 4, = {we 2: XY(0) = Y% (w)}.
Since X% @) = Y% w) P-a.e. then P(4,) = 1 and

p(m A,,)=1_p(u Af,)zl— Y P(AS) = 1.

aeQ aeQ aeQ

Let A =) A,.
aeQ
For every we A and ae Q it holds X% @) = Y% w) and thus

X(w)(x) > a if and only if Y(w)(x) > a, xeZ.

Let there exist we A and xe % such that e.g. X(w)(x) > Y(w)(x). Then there
exists ae Q such that X(w)(x) > @ > Y(w)(x) which means that X(w)(x) > a
but it does not hold Y(w)(x) > a which is a contradiction. Q.E.D.
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A fuzzy random variable is called integrably bounded if X is integrably
bounded random set for all ae (0, 1]. The space of all integrably bounded fuzzy
random variables we denote by FV (£, %,(Z)).

The expected value EX of a fuzzy random variable X is defined as the
unique fuzzy set which satisfies the property

(EX)* = E(X%)
for every ae (0, 1]. The proof of the existence of this integral for any integrably
bounded fuzzy random variable is to be found in [11] (for the case £ = R", but
for this general case the proof works in the same way). The proofin the question
is based on the set representation of fuzzy sets which can be formulated as
follows ([9]):

Lemma 2: Let M be a set and let {M,, a€[0, 1]} be a family of subsets of
M such that

1) My=M
(2) a< pimplies M, 2 M,

() ¢, <a,<..,lim a, = aimplies M,= () M,
n— oo n=1
Then the function u: M — [0, 1] defined by u(x) = sup{a: xe M,} has the
property that {xe M: u(x) > a} = M, for every a€[0, 1].
A natural generalization of the Hausdorff distance to the space (%) is the
metric d introduced in [11]. For u, ve (%) define by

d(u,v)= su;gh(u", v9.

In the same paper it was shown that (%,(%’), d) is a complete metric space.
The metric structure in FV (£, (%)) can be defined similarly.
For X, YeFV (2, (%)) define

D(X, Y) = sup J~ h(X%(w), Y¢(w)) dP.
a>0 Jo

In the next two fuzzy random variables X, Y e FV(£2, #,(%)) are considered
to be identical if X(w) = Y(w) P-a.e.
Lemma 3: (FV (2, #,(%)), D) is a metric space.

Proof: D(X, Y) = 0 implies f h(X%w), Y% w)) dP = 0 for every @ > 0 and
02

thus X% ) = Y% w) P-a.e. By Lemma 1 we have X(w) = Y(w) P-a.e.
The properties D(X, Y) = D(Y, X) and D(X, Y) < D(X, Z) + D(Z, Y) are clear
from the definition of the metric D.

Q.E.D.
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Theorem 1: The metric space (FV(£2, %,(Z)), D) is complete.

Proof: Let {X,} be a Cauchy sequence in FV(£2, #,(%)). Take any a€e (0, 1].
The sequence {X?}, where X? is an a-cut of fuzzy random variable X, is a
Cauchy sequence in £ (2, Z).

Since the space (£(£2, %), [) is complete then there exists a random set
X% L (2, ¥) such that

Xg = X

where the convergence in the metric / is uniform with respect to a.
For every we 2 consider the family {X%w), a€[0, 1]} where X°(w) = Z.

The purpose of the next part of the proof is to show that the family {X*%w),
ae|0, 1]} satisfies the conditions (2) and (3) of Lemma 2. The proof of these
properties is similar to the one used in [11].

Denote by € (4, B) = sup inf la—5b].
acA heB

Note that g is a semimetric and 4 < c1B if and only if o(4, B) = 0 where
clB is the closure of the set B.
(2) Let @ < B. Then

o(X (@), X%(w)) < o(X (@), X}(@) + o(Xh(®), Xi(w)) + o(Xi(@), XY(w))

Since X,ZL X" then X,K(w)L» X"(w) P-a.e. for y = B, a, thus the first and the
third term tend to zero for almost every we £2. The second term o(X’(w),
X% w)) = 0 because Xf(w) = X%(w). Thus XAw) = X%w) P-a.e.

(3) Let a, ~ a. By the property (2) it is clear that X“(w) <= (") X“(w) P-a.e.

n=1|

and thus it is enough to prove that

o < ) X*(w), X"(w)) =0.

n=1

Clearly o ( ﬁ X"(w), X"(a))) <o ( ﬁ X*"(w), ﬁ Xj""(a))) +

n=1 n=1 n=1

+e ( M Xi"(@), X}’(ﬂ))) + o(X{ (@), X(w))

n=1

for any fixed j. Since (1) X;"(®) = X?(w) then

n=1

0 ( ﬁ X" (o), X,-"(w)) =0.

n=1
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; !
The third term converges to zero because X{— X Let us show that also the
first term is equal to zero. For every m > 1 it holds

o(ﬁ X*(@), () x;'"(w)) < e(ﬁ X*(), X“'“(w)) +

n=1 n=1 n=1

+ oX*(@), X(@) + 0 (x;‘m(co), (x\l x;’"(w)).

Since ﬁ X"(w) € X*(w) then o ( ﬁ X" (w), X“'"(w)) =0.

n=1 n=1

Clearly o(X*(w), X;™(»)) < € for j > j,.
Note that the index j, does not depend on m (since X,‘,’L X? uniformly with
respect to @). Finally, by the argument similar to the one above, we have
0 (Xj""'(w), N Xj""(w)) < ¢ for m > m,.
n=1

Thus X%(w) 2 () X*(w) P-a.e. and there exists E€ o such that P(E) =0
n=1

and for every we £\E the family {X%(w), a€[0, 1]} satisfies the conditions of
Lemma 2 and we may apply it. Put

X(w) = u(x)e Fo(Z) where u(x) = sup{a: xe X (w)}
if e Q\E
= Iy, if weE,
where I, is the indicator function of the set {0}.
Let us show that XHL X.

Since {X,} is a Cauchy sequence then for every £ > 0 and n, m > n, it holds
D(X,, X,,) < &

Let n (n > ny) be fixed. Then, using the Lebesgue convergence theorem for
random variables, we obtain

(X2, lim X2) = ‘[ h(X%®), lim X%(w)) dP =
m— o n m-— o0

= J lim h(X%w), X%(w)) dP = lim I h(X%w), X&(@)) dP = lim /(X?, X2)
n m — o0 n m— o

m— oo

and
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(X2, X9 = lim (X%, X%) < lim sup/(X% X2) = lim D(X,, X™) < ¢

m-=o© g>0

for every a > 0.
Thus D(X,, X) = sup/(XZ, X% < ¢ for n > n,. Q.E.D.
a>0

Using Lemma 2, the linear structure in %(Z') can be defined as follows:
(u+v)(x) =sup{a: xeu” + v}

(Au) (x) = sup{a: xeAu} =u(A".x) ifA#0
=0 if A=0and x #0
= supu(y) if A=0and x=0
ved

for u, ve #(Z'), AeR. .

In [10] it was shown that the metric space (#,(%Z), d) can be embedded
isometrically into a Banach space ([10], Theorem 2.2.). To extend this result to
the space (FV(£2, #,(Z')), D) we need to define the linear structure in FV(£2,
F(X)):

X +Y)(0) =X + Y(w) and (4.X)(w) = 1. X(w)

for X, YEFV(Q, #,(Z)), AeR.
It is very easy to see that for any X, Y, Ze FV(£2, %,(%)) it holds
(@ X+Y=Z+YimpliesX=2Z
b)) DX+Z,Y+2Z)=DX,Y)

(see also [10], Proposition 2.2.) and thus the embedding theorem for
FV (2, #,(Z)) can be stated in the same way as [10], Theorem 2.2.

Theorem 2: There exists a normed space A" such that (FV (€2, #,(Z)), D)
can be embedded isometrically into 4" in such a way that:

a) addition in L(£2, 4") induces addition in FV (2, #,(%))

b) multiplication by nonnegative real-valued integrable function & in

L(£2, /") induces the corresponding operation in FV (2, #,(%))

For the construction of the space A" and an embedding see [10], pages
555—556.

Note that some martingale convergence theorems in metric D were proved
in [4] and the ergodic theorem was proved in [3].
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PE3IOME

3AMEYAHUWE K METPUUYECKOW CTPYKTYPE ITPOCTPAHCTBA
UHTETPAJIBHO-OPTAHUYEHHBIX CJIYYAVIHBIX BEJIUUUH

An ban, bpaTtucnasa
B npocTpaHCTBe WHTErpa.lbHO-OTPAaHHYEHHBIX CJy4aHbIX BEJIMYHH TOCTPOEHA METPHKA,
OTHOCHTE:IbHO KOTOPOIi, Kak Noka3aHo B paboTe, paccMOTpHBaeMoe MPOCTPAHCTBO noJiHO. Bosee

TOro. B CTaThe J0KA3aHO, YTO JaHHOE METPUYECKOE MPOCTPAHCTBO MOXHO M30METPHYECKH MNO-
IpyXHTb B BaHaXOBO MPOCTPaHCTBO COXpaHsAs JIMHEHHYIO 3aIaHOBO NPOCTPAHCTBA.
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SUHRN

POZNAMKA K METRICKEJ STRUKTURE PRIESTORU INTEGROVATELNE
OHRANICENYCH FUZZY NAHODNYCH PREMENNYCH

Jan Ban, Bratislava
V priestore integrovatelne ohrani¢enych fuzzy nahodnych premennych je definovana metrika,
vzhladom na ktor je tento priestor iplny. Navyse je dokazané, Ze takyto metricky priestor sa da

izometricky vnorit do nejakého Banachovho priestoru tak, 7e sa zachovava linedrna $truktira
obidvoch priestorov.
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