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AN APPLICATION OF CHANGE OF INDEPENDENT VARIABLE
IN THE OSCILLATION THEORY OF DIFFERENTIAL
EQUATIONS WITH UNBOUNDED DELAYS

JAROSLAV JAROS, Bratislava

1. Introduction

We are interested in oscillation theorems for functional differential equa-
tions of the form

x'(t) + 3 p)x(t — 1(1)) = 0, (1.1)

i=1

where n > 1, p,, 7,: (4, o0)— (0, c0) are continuous functions and lim (¢ —

11—
—17(t)=00,i=1,..., n
The special case of (1.1) in which the p!s and 7,’s are constants has been
studied by a number of authors. For instance, Tramov [17] has proved the
following
Theorem A. Suppose that p(t) = p,and 7(t) =7, i=1,..., n, on [y, o0).
Then all solutions of (1.1) are oscillatory if and only if

-1+ Zp,-e“">0 (1.2)

i=1

for all 1 > 0.

For a different proof of the above theorem see also [9].

Another necessary and sufficient condition for oscillation of all solutions of
(1.1) in the case of constant parameters appears in [10].

Theorem B. Suppose that p(t) = p,and 7,(t) =7, i = 1,..., n, on [¢t,, ©).
Then all solutions of (1.1) are oscillatory if and only if there exist positive
constants N, i = 1,..., n, such that

SN=1 (1.3)

i=1
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and
Y E(l ln-N—>>0 (1.4)
i=1 1'—: p: i
We note that in [10] only the sufficiency part of Theorem B has been proved.
However, it is not difficult to see, with the aid of Proposition 1 from [1], that it
is also a necessary condition for oscillation of all solutions of (1.1).
In [6], Hunt and Yorke studied also the case where p,(¢) and 7,() are not
necessarily constants. In particular, they proved the following result.
Theorem C. Suppose that

0<7(t) =1, i=1,...,nt21t, (1.5)

for some constant 7, and

hm inf Z pi(t) (1) > —. (1.6)
i=1 €
Then all solutions of (1.1) are oscillatory. .
However, the criterion given by Theorem C does not work for such impor-
tant equations with non-constant p,(r) and 7,(t) as the following Euler-like
equation

x'() + Z x(at) = (1.7)
i=1

where p;>0and 0 < 0, < 1, i = 1,..., n, are constants. This is due to the fact
that the delays (1 — o;)¢t, i=1,..., n, are unbounded in this case, i.e. the
condition (1.5) is not satisfied. Since equations with deviating arguments of the
form ot, 0 < 0 < 1, play an important role in various applications (see, for
example, Kato and McLeod [7], Ladde, Lakshmikantham and Zhang [10],
Ockendon and Tayler [13], Staikos and Tsamatos [14], Tomaras [16] and the
references cited therein), it would be of practical interest to know effective
oscillation criteria also for the equations of the form (1.1) where the deviations
of arguments are not necessarily bounded.

The purpose of this note is twofold. First we show, by means of an
“oscillation invariant” transformation of the independent variable, that the
result of Hunt and Yorke can be extended also to differential equations with
unbounded delays.

Secondly, we enlarge considerably the class of delay differential equations
for which the oscillation situation can be completely characterized. The class
includes the equation

X+ Y pt = (= 1)) =0, (1.8)

i=1
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where k is a positive integer and p, > 0and 7, > 0,/ = 1,..., n, are real constants,
as well as equations of the forms (1.7) and

x'(t) + 2 IL x(t%) = 0, (1.9)
f=|

where p,>0and 0 < 0, < 1,i=1,..., n, are given constants.

As it is customary, we restict our attention to those solutions x(¢) of Eq.
(1.1) which exist on some half-line [¢,, ®©), t, = t,, and satisfy sup{| x(?)]:
t = T} > Oforany T = t_(the so called proper solutions). Such a solution is said
to be oscillatory if it has arbitrarily large zeros and it is said to be nonoscillatory
otherwise.

2. Main results

The key tool in establishing our results is a transformation of the original
equation (1.1) into an equation with bounded delays.

Theorem 2.1. Assume that for some continuous functions 7, i=1,..., n,
defined on [¢,, o0) and such that

0<1t(t) €1, i=1,...,nt2t, 2.1)
for some constant 1, there exists a function g€ C, ([t,, 00)) with the properties
lim ¢(¢) = 00 and ¢’(¢) > 0 on [t,, c0), which is the simultaneous solutlon of the

11—

functional equations

o(t) — o(t — (1)) = 1,(1), i=1,..,,n, (2.2)

for all large ¢. If, moreover,

lim inf Z ”'("’_ll( ) o=y L (2.3)
e s @' (@7(s) e

then all proper solutions of (1.1) are oscillatory.
Proof. Assume that there exist functions 7,e C([t,, ®0)), i=1,..., n, and

ve C,([ty, o)) such that ¢’(¢) > 0 on [¢,, c0), lim ¢(t) = o0 and (2.1) and (2.2)
hold. Then the change of variables o

s=0@),  y(s)=x(), 2.4
in (1.1) leads to the equation of the form

y©+ Y 2O oz =o. @.5)
i=1 9'(9p™(5))
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Obviously, x(¢) is a proper solution of Eq. (1.1) if and only if y(s) is a proper
solution of the transformed equation (2.5) and, moreover, x(¢) is oscillatory if
and only if y(s) is oscillatory. The assertion of Theorem 2.1 now immediately
follows from Theorem C applied to the equation (2.5).

Remark 2.1. Although the assumption of the existence of a solution ¢ to
(2.2) with desired properties seems to be rather restrictive (for related questions
see Heard [5], Kuczma [8] and Neuman [11, 12]), we shall show that it is satisfied
for a large variety of equations. As an immediate consequence of Theorem 2.1
we have, for example, the following result.

Corollary 2.1. Suppose that there exists a constant 6,, 0 < ¢, < 1, such that

0<t(t)<opt, i=1,....n, (2.6)

for all large ¢, If, moreover,

liminfr ) p,(t)In >l, 2.7
i ot iz t—r1(t) e

then all proper solutions of (1.1) are oscillatory.

In fact, the functions @(7) = Int and 7,(t) = In

satisfy the con-
t— 1(t

ditions (2.1) and (2.2) of Theorem 2.1 with 7, = In(1/(1 — o)), and (2.3) be-
comes (2.7).

Let us now consider a more general delay differential equation than (1.1),
namely,

x'(t) + p) f(x(t — (1)), ..., x(t = 7,(2))) = O, (2.8)

where p, 7;: [t,, o0)— (0, o0) are continuous functions, lim (¢ — 7,(t)) = oo,
=X

i=1,....,n f(y,..., y,) is continuous on R", increasing in each y,, i =1, ..., n,
and satisfies

flay,, ..., ay,) = af(yis ... ya)

for all ae R (cf. Fukagai and Kusano [2]).

The following theorem can be regarded as an extension of Theorem A
stated in the introduction.

Theorem 2.2. Let for some positive constants 7,, i = 1, ..., n, the functional
equations

p)— ot —t(t) =1, i=1,..,n, (2.9)
have a simultaneous solution ge C,([¢,, o)) such that ¢’(t) > 0 on [¢,, c0) and
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lim ¢(t) = co. Assume, moreover, that there is a constant ¢ > 0 such that
1 —

p(1) = co’(1) (2.10)
for all large ¢. Then all proper solutions of Eq. (2.8) are oscillatory if and only
if
a7,

— A+ cfe™, ..., e >0 Q2.11)

for all A > 0.
Proof. As in the proof of Theorem 2.1, the change of variables s = ¢(¢),
y(s) = x(¢) in (2.8) leads to the equation

V() +fys — 1), s = 7,)) =0 (2.12)

with constant parameters and a direct application of Theorem 6 from [2] to
(2.12) proves our claim.
Example 2.1. Consider the delay differential equation

x'(t) + 7 x((* = 1)), .., x(FF = 1)) =0, (2.13)

where k is a positive integer, 7, > 0, i = 1, ..., n, are given constants and fis as
before.

The increasing continuously differentiable function ¢(t) = ¢, t = 1, =0,
satisfies (2.9) with 7, =11, i=1,..., n, and p(f) = k' ¢’(¢). Thus, by Theo-
rem 2.2, all proper solutions of (2.13) are oscillatory if and only if

A+ ke, .., ™) >0 (2.14)
for all 1 > 0.
Example 2.2. Consider the equations
x'(t) + t7 ' f(x(ay0), ..., x(0,1)) =0 (2.15)
and
x'() + (¢Ine)~"f(x(t), ..., x(£™) = 0, (2.16)

where 0 < 0:< 1,i=1,..., n, are constants and f is as before.

Then (2.9) are satisfied for 7,=In(1/c), i = 1,...,n, and @(¢t) = Int (resp.
o(t) = In(In¢)). According to Theorem 2.2, all proper solutions of (2.15) (or
(2.16)) are oscillatory if and only if

—A+flo7*, ..., 077 >0 2.17)

for all A > 0.
Motivated by the above examples (2.15) and (2.16) it is easy to indicate an
infinite sequence of “‘equivalent” equations which can be transformed into an
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equation with constant coefficients and constant delays. In fact, let 7, > 0,
i=1,..., n, be real constants. Define

) =t—r1, () = exp[z., _,(In1)], m=1,2,...
1
pO(t)zl’ pm(t)=;pm—l(lnt)’ m=" 2a

and consider the equations

x(1) + pu() ST (D)), ..., X(7,(2))) = O, (2.18,)

m=20, 1,.... Then for every m =0, 1,... all proper solutions of (2.18,,) are
oscilatory if and only if
—A+fE", ..., e >0 (2.19)

for all A > 0.

We note that the equation (2.8) may not be linear as the following example
shows.

Example 2.3. Consider the nonlinear delay differential equations
X1y + 2 [] |x(o:0)|“sgn x(c:t) = 0 (2.20)
i=1

and
x'(0) + 2= [T 1x(%)|“sgnx(c%) = 0, @2.21)
tint =

where p>0,0<0,<1and ;2 0, i=1,..., n, are constants with

¥ =1L

i=1

According to Theorem 2.2, all proper solutions of (2.20) (or (2.21)) are
oscillatory if and only if

n A

—}.+p[n (l/a,.)"’] >0 (2.22)
i=

for all A > 0. It is easy to check that the condition (2.22) is satisfied if and only

if

¥ aln(l/o)> L

L (2.23)
i=1 (<]
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Remark 2.2. All the results presented in this paper have their analogues for
advanced equations of the form

x'(t) — i p()x(t+ 1(t) =0 (2.24)

i=1

and
x'(t) — p(@) f(x(t + 1,(2)), ..., x(t + 7,(2))) =0, (2.25)

where n 2 1, p, p;, 7, [ty, 0) = (0, %), i = 1,..., n, are continuous functions
and f satisfies the same conditions as before.

Finally we remark that all the results remain valid if the equations (1.1),
(2.8), (2.24) and (2.25) are replaced by the inequalities

fro+ T poxa- (o)} senx() <0, (2.26)

i=1

(1) + p(Of(x(t — 1y(1)), ..., x(1 — 7,(1)))} sgn x(1) < 0, (2.27)

e - % poxe+ ()] senx() 2 0 (2.28)

i=1

and
X(0) = p(O)fx(t + 7,(1)), .., x(t + 7,(1)))} sgn x(1) = 0, (2.29)
respectively.
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SUHRN

POUZITIE ZMENY NEZAVISLEJ PREMENNEJ V TEORII OSCILACIE
DIFERENCIALNYCH ROVNIC S NEOHRANICENYMI ONESKORENIAMI

Jaroslav Jaro$, Bratislava

V praci si odvodené postacujuce podmienky oscilacie vietkych regularnych rieSeni diferen-
cialnych rovnic prvého radu s neohrani¢enymi oneskoreniami. Pre ur¢ité triedy rovnic, ktoré mo6zu
byf transformované na rovnice s konStantnymi koeficientami a konstantnymi oneskoreniami, st
odvodené podmienky aj nutnymi podmienkami.

PE3IOME

MMPUMEHEHME MPEOBPA30BAHMW S HE3ABUCUMO¥ NMEPEMEHHO¥ B TEOPUU
KOJIEBJIEMOCTU JUODEPEHLIMAJIBHBIX YPABHEHWUY C HEOTPAHUYEHHBIMU
3AIIA3bIBAHUAMMU

Apocnas Apow, Bpatucnasa

B paboTe mpuBedeHbI OOCTAaTOYHBIE YCJIOBHA KOJIEGJEMOCTH BCEX NPaBHJIbHBIX PELIEHHH
nubdepeHIHaNbHbIX yPaBHEHHI NMEPBOrO NOPANKA C HEOTPAHMYEHHBIMH 3ama3ibiBaHHAMH. s
HEKOTOPBIX KJIACCOB ypaBHEHHH, KOTOPbIE MOTYT ObITh Npeo6pa3oBaHbl B YPABHEHHA C MOCTOSIH-
HBIMH K03(}HUMEHTAMH M MOCTOSAHHBIMHU 3ana3AblBAHUAMM, NIPHBEACHHbIE YCIIOBHSA SBJIIOTCA H
HEOOXOIUMBIMH.
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