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LVIII—LIX

TYPICAL CONTINUOUS FUNCTION HAS THE SET OF CHAIN
RECURRENT POINTS OF ZERO LEBESGUE MEASURE

NORA FRANZOVA, Bratislava

We shall consider C(Z, I) the set of all continuous functions f: I — I, where
I is a real compact interval, and the usual norm || f|| = max |f(x)]. For any

n=1, 2,...f/" denotes the n-th iterate of f, Per(f) denotes the set of periodic
points of f'and €2(f) is the set of all non-wandering points of f; here xe Q(f)
means that for every neighborhood U(x) of x, there exists n > 1 such that
S (Ux)nU(x) #0.

Definition. (i) For > 0 let {Q/(x, f)}/~, be a sequence defined in the
following way:

QY(x, f) = U/x) is the &-neighborhood of x,
QL '(x, ) = U(f(QUx, 1)).

Let Q. (x, f) = ﬁ (J Qi(x, /) and Q(x, f) = () Q.(x, /). A point x is called a

i=0 j>i 20
chain recurrent poiilt of £, if xe Q(x, f). It is possible to give another equivalent
definition:
(&i) Point xe[ is called a chain recurrent point of f, if for any & > 0 there
exists a sequence of points (chain {x,}{ _, such that x, = x = x, and

f(x)—xi.l<e i=01,..n—1.

The set of all chain recurrent points of fis denoted by B(f). It is easy to see
that Per(f) = £2(f) = B(f). For more details see e.g. [3] or [5]. The set B(f) has
special importance in general analysis of non-wandering points. Making decom-
position of non-wandering or chain recurrent points by using the relation x ~ y
if and only if Q(x, ) = Q(y, f), we get classes of equivalences, which are stable
in some sense (more details in [5]).

In [1] it is proved, that the set of functions fe C(/, I) with the property that
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£2(f) is a nowhere dense, closed subset of a null set is residual in C(/, I). Now
we shall generalize it to the set B(f). The proof is based on two lemmas.
Lemma 1. Let fe C(/, I). Then for every £> 0 and B> 0 there exists
ge C(1,1) and a neighborhood O,(g) of the function g, such that | f—g| < &
and for every g*€ 0,(g) u(B(g*) < p.
Proof. Let fe C(/, I), € > 0 and > 0 be given. Since [ is a real compact

interval, there exists 6 such that 0 < § < § and for all x, yel

|x — y| < & implies | f(x) — f()| < g (1)

Take a positive integer m, large enough, and points @, < by < a, < b, <...<

<ay < b, where I = [a,, b,], Y u(la;, b]) < B and
i=0

|ai+,—ai|<5fori=0,...m—l,andlbm—am|<g )

Denote [a;, b] = I; [b;, a,,,] = K; and let ¢, = (b, + a;, ,)/2 denote the middle
of K forany ie{0, ... m — 1}. Itis easy to see that for every i there exists n(i) such
that

1) — cap)] < 8 < g 3)

This follows from (2). Now define a function ge C(J, I) in this way:
g(x) = ¢, if xeK; and let g be a linear function on I, for every i, and let

flay) = g(a,) and f(a,,) = g(a,,). So if for some i we have x € K, then by (1) and
(3) we get

(%) = g(0)| < |fx) — fe) | + 1) — capy] < f )

and if xe I, = [a;, b] then by (1) and (4),

IA(x) — g < 1/(x) — fla)| + | fla) — g(a) | + |g(a;) — g(x)| <
)

£ €
<-+-+|g(a) — g(x
A lg(a) — g(x)|

Because of linearity of g, we have by (1) and (4)
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lg(a) — g(x)| < |g(@) — g(b)| < |g(@) — fla)| + (@) — f(b)] +
+1A(b) — g(b)] < g e

This along with (5) implies | f(x) — g(x)| < &.
This proves that | f— g| < &.
Now we are going to prove that u(B(g*)) < Bfor any g* e C(I, I) sufficient-
ly near to g.
Take a > 0 such that M, = (¢; — a, ¢, + @) < K, for all i and

m m — 1
w(O)+u(Um)<p ©)
i=0 i=0

Itis obvious that g(K;) = M, for any i and because of continuity of g there
exists such 1> 0 that U,(g(U(K)))) < M, ;. The same is true for any g*e C(/, I)
sufficiently near to g. Now for every such g*, if xe K,\ M, then x¢Q,(x, g%
and also x¢ Q(x, g*); this implies x¢ B(g*). Consequently (K\M))n B(g*)=
= 0 for every i and by (6), u(B(g*)) < f.

Lemma 2. Let > 0. Then exists a set 4 s < C(I, I) with the property that
C(I, I)\ A, is nowhere dense in C(I, I) and u(B(f)) < p for every fe Ay.

Proof. A;: = {fe C(I, I); u(B(f)) < B} is the set we are looking for. In
Lemma 1 we have proved that A4 p contains a dense open set, hence C(/, )\ 4 )
is nowhere dense in C(/, I) and this proves our lemma.

Theorem. The set A: = {fe C(I, I); u(B(f)) = 0} is residual in C(, I).

Proof. It is easy to see that 4 = () Ay, and A, 1s residual in C(I, I)

n=1

according Lemma 2.

Remarks. As a consequence of this theorem we get that, for a residual
subset of continuous functions on the closed interval, there is no absolutely
continuous (relative to Lebesgue measure) invariant measure. The proof is
based on the fact that the support of an invariant measure is a subset of the set
of non-wandering points of a given function. For necessary notions and results
see e.g. [6, 7].
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PE3IOME

TUIMWUYHOE HEINPEPbIBHOE OTOBPAXXEHWE UMEET MHOXECTBO MOYTHU
HEBJIVKJAIOIUX TOYEK HYJIEBOW MEPbBI JIEBETA

Hopa ®pan3osa, BpaTtucnasa

M3BecTHO, 4TO THUNMHYHOE HEMPEPLIBHOE OTOOpaXKEHHE MMEET MHOXECTBO MEPHOIHYECKHX
Touek HyseBoi Mepbl Jlebera. Arponcku, BpakHep u JlaukoBu4 3TO caMoe NOKa3ajai O MHOXECTBE
HebsyXaarolMuxX ToyeK. B cTaThu qoKa3aHo, 4TO MHOXeCTBO ciabo Hebyxaaromux Touek oba-
OAET TEM XK€ CBOMCTBOM M 3TO MPEACTABJIAET mnocienHee 0O0OOLIEHNE 3HAYNTESIbHOE B TEOPHH
AMHAMHHECKHX CHCTEM.

SUHRN

TYPICKA SPOJITA FUNKCIA MA MNOZINU SKORO NEBLUDIVYCH
BODOV NULOVEJ MIERY

Nora Franzova, Bratislava

Je zname, Ze typicka spojita funkcia na uzavretom intervale, ma mnozinu periodickych bodov
nulovej Lebesguovej miery. Ten isty vysledok pre mnoZinu nebludivych bodov dokazali Agronsky,
Bruckner a Laczkovich. V ¢lanku je tento vysledok zovieobecneny na mnozinu skoro nebladivych
bodov, pri€om tato mnoZina je maximalnou zovieobeciiujiicou spomedzi tych, ktoré si1 délezité pri
klasifikacii dynamickych systémov.
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