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A REMARK ON ONE TYPE OF POINCARE’S INEQUALITY

EUGEN VISZUS. Bratislava

1 Introduction

It is well known that the weak solutions to the equation

n “ .
y —i[a,.,ﬁi]:o e, (1.1)
ii=1  0x; ox;
where 2 < R" is a bounded domain and a,e L"(£2), i, j = 1, ..., n, such that
Z a;&& > 7IEP y>0, SeR" (1.2)

ij=1
are Holder continuous, i.e. we C*#(£), ue(0, 1] [2. Theorem 5.4.32]. Now a
question arises what can be said about the value of Holder exponent .

In this note we shall deal with a special case of Poincaré’s inequality on the
cube and then, as a consequence, we may obtain some information about the
exponent u.

Adopting the notation of [2] we can state our result.

2 Poincareé’s inequality

The aim of this part is to give a direct proof of the following assertion:
Theorem 2.1. Let Qr(x°) = R", Qp(x®) = {xeR": |x, = x| < R, i=1.....n)

)
x" =& oo X
and

N = {ue W"A(Qx(x"): u =0 on S with S| = ¢,|Qx(x")]. ¢, > 0}

(S depends on u but not on c,).
Then for ue N

J. [ul] dx < ('zf [Vul* dx, = 2n<l + l) R’ 2.nH
Qpx") Opx™ cy
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This assertion is well known [2, Lemma 5.4.26] but its proof is not direct. A
construction of that proof'is analogous to the proof of Theorem 7.1 in [1]. There
is a disadvantage of this type of proof that we do not see an exact dependence
of the constant ¢, on Q(x") and ¢,.

The result of the followmg Lemma (proved in [1]) will be used later:

Lemma 2.1: Let ue W' (Qg(x")). Then

f e < 2R f Vil dy + — U wrdel. @2
Opix™ Qp(x™ 1Qr(x7)] 1040t
The proof of Theorem 2.1:
Let indicate 0:(x") = 0.
If we put ——flld\ for wueN,
then it is easy to see that
_ 1 _
u=— j (u —u) dx
IS1Jos
and thus
1 _uois < 1€l n
udx| =||Qla] < = lu — | dx (2.3)
0 |s| Jo s
Next (2.3) yields by Holder’s inequality
j u d\ < lQI J lu — af* dx (2.4)

To estimate the right-hand side of (2.4), we use Lemma 2.1 for (z — i7) and
obtain

] Judr
Q] 1o

which together with (2.2) immediately gives the assertion of our theorem.

_—2nR ~[quI dx (2.5)

3 Regularity of solutions to (1.1)

Results which will be stated in this part are analogous to those in [2].

Lemma 3.1: Let n > 3 and ve W'? (Q,,(x")) be a weak non-negative sub-
solution to the equation (1.1) where Nl g0y < @ 6 j =1, ..., nand let the
condition (1.2) be satisfied in R”. Then
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1=

sup v(x) < c,(2R)_5<J~ v? dx> 3.1)
YEQp(x0) 014(x")

n(n —2) 3 9\2 3 41
=2 ° 2~‘{<2" 22) (n+l)25(l+23n3((—1>)}4
n— ¥

= i n
§ = —, k=
ig()k’ n—2

where

(s may be estimated by integral criterion).

The definition of subsolution is in [2].

Lemma 3.1 is proved in [2, Theorem 5.4.9] except possibly for calculation of
c;. This calculation follows directly from construction of the proof except
possibly for fact that we put

a:,z(f hzk’dx>2"’ in (5.4.15).
Q,

Lemma 3.2: (of the Harnack type)
Let n > 3 and ue W'? (Q,z(x")), u > 0, be a weak solution to (1.1).
Let ||a!-,~|IL1,(Q4R(X0)) S a, l,j = 1, /] and (12) hOldS
Let S = {xe Quz(x°): u(x) = 1}, |S| > c4|Qux(x°)|. Then
u(x) = cs(a, 7, ¢5) >0 in Qr(x") (3.2)

where cc=e4

’

1 n
A=c32%n2.r(l+i)i-< 4 )(4“)5(2)
ci) \4—r 2 y

This Lemma is in [2, Theorem 5.4.20] but it does not determine the concrete
constant ¢;. We obtain this constant by using Theorem 2.1 in (5.4.25), [2].
Lemma 3.3: [2, Theorem 5.4.32]
Let ue W), 2< R", n > 3, be a bounded domain and u be a solution to

(1.1) with [la;|l,» < @ and let (1.2) hold. Then ue C*#(£2), u = —LI%:A'—C—S)
' n

<c5 — constant from (3.2) with ¢, = %)
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The proof of Lemma 3.3 follows immediately from Lemma 3.2. Thus Theo-
rem 2.1 enables us to determine the constant u (which is determined by par-
ameters a, y of equation (1.1).

On the other hand it is possible to find optimal constants a and y (to
determine a class of equations) such that u be the greatest.
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SUHRN
POZNAMKA K JEDNEMU TYPU POINCAREHO NEROVNOSTI
E. VISZUS, Bratislava

V praci je uvedeny priamy dokaz (s presnym urcenim konstanty) jedného typu Poincarého
nerovnosti, ked oblast Q je n-rozmerna kocka.

PE3IOME.
3AMEYAHHWE Ob OJHOM TUIE HEPABEHCTBA IMYAHKAPE
E. BUC3YC. Bpatucnasa

B paboTe npeaokeHo NpAMOE 10Ka34TEIbCTBO (C TOYHOH KOHCTAHTOM) OHOr O TUIMA HEPABEH-
ctBa [lyankape B ciydae, koraa obnacts Q €cThb H-MEPHBIH KyO.
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